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A MiniZinc Models

Latin Square (integer).

int : n;
array[1..n,1..n] of var 1..n: x;

constraint forall (i in 1..n) (alldifferent (j in 1..n) (x[i,j]));
constraint forall (j in 1..n) (alldifferent (i in 1..n) (x[i,j]));

The variable x[i,j] being equal to k represents the cell at row i and column j having
the value k.

Steiner Triples.

int: nb = n * (n-1) div 6;
array[1..nb,1..n] of var 0..1: x;

constraint forall (i in 1..nb)
(sum (j in 1..n) (x[i,j])= 3);

constraint forall (i,j in 1..nb where i!=j)
(sum (k in 1..n) (x[i,k] * x[j,k]) <= 1);

The variable x[i,j] being equal to 1 represents the element j belonging to the triple i.

BIBD.

int: v;
int: k;
int: lambda;
int: b = (lambda * v * (v - 1)) div (k * (k - 1));
int: r = (lambda * (v - 1)) div (k - 1);

array [1..v, 1..b] of var bool: m;

constraint forall (i in 1..v) (sum (j in 1..b) (bool2int(m[i, j])) = r);

constraint forall (j in 1..b) (sum (i in 1..v) (bool2int(m[i, j])) = k);

constraint forall (i1, i2 in 1..v where i1 != i2)
(sum (j in 1..b) (bool2int(m[i1,j] /\ m[i2,j])) = lambda);

The variable m[i,j] being equal to 1 represents the object i belonging to block j.

Social Golfers.



int: n_groups;
int: n_per_group;
int: n_rounds;
int: n_golfers = n_groups * n_per_group;

set of int: groups = 1..n_groups;
set of int: group = 1..n_per_group;
set of int: rounds = 1..n_rounds;
set of int: golfers = 1..n_golfers;

array [rounds, groups] of var set of golfers: x :: is_output;

constraint forall (r in rounds, g in groups)
(card(x[r, g]) = n_per_group);

constraint forall (r in rounds)
(all_disjoint (g in groups) (x[r, g]));

constraint forall (a, b in golfers where a < b)
(sum (r in rounds, g in groups)

(bool2int(a in x[r, g] /\ b in x[r,g])) <= 1);

The variable x[i,j] is the set of players who are in Group j in Week i.

N-Queens (Boolean).

array[1..N,1..N] of var 0..1: x;

constraint forall (i in 1..N) (sum (j in 1..N) (x[i,j]) = 1);
constraint forall (j in 1..N) (sum (i in 1..N) (x[i,j]) = 1);
constraint forall (k in 2-N..N-2)

(sum (i,j in 1..N where i-j= k) (x[i,j]) <= 1);
constraint forall (k in 3..N+N-1)

(sum (i,j in 1..N where i+j= k) (x[i,j]) <= 1);

The variable x[i,j] being equal to 1 represents a queen being placed in square (i,j).

N-Queens (integer).

int: n;
array [1..n] of var 1..n: x;

constraint
forall (i,j in 1..n where i != j) (

x[i] != x[j] /\ x[i]+i != x[j]+j /\ x[i]-i != x[j]-j
);

The variable x[i] taking the value j means that the queen in column i is in row j.

B Proofs for Section 3

Here we give details for showing undecidability of the solution symmetries. The
argument given in Section 3.3 is essentially complete, though the more detailed
discussion of tiling given here may give some extra assistance. The underly-
ing tiling construction required for Section 3.2 is substantially more technical
though.

Our tiles are formed from a Turing machine program T , which runs (deter-
ministically) forever when started on the blank tape in the initial state 0. Recall
that the problem of deciding if state 1 is eventually reached is undecidable; sub-
ject to minor modification of the program T we may assume without loss of



generality that there is a single possible transition into state 1 in the program
definition. The program T encodes into a tiling problem by square tiles with
restricted adjacency relations, so that each successive tiled row of the first quad-
rant of the plane corresponds to each successive tape configuration. We direct
the reader to Robinson’s original presentation [3] for details, but give a rough
description of the basic tiles to aid the discussion (note we consider a version
tiling only the positive quadrant, starting from a Turing machine on a one-way
infinite tape). There are four general kinds of tiles as follows.

– Start tiles. These encode the initial configuration.
– Alphabet tiles. These tiles translate standard tape cell content (that is, a

symbol written on some tape cell) from a row to the row above, with no
change to the content.

– Action tiles. These tiles enact the program commands: there is a tile for each
command of the Turing machine program. If the program asks for a transition
to the right (for example), then the new state information is displayed on
the right hand side of the tile and dually for left transitions. These are the
only tiles that can be placed above a tile whose upper edge encodes a symbol
and a state.

– Merge tiles. These are for placing next to the action tiles, to receive the new
state information. There is a left and a right merge tile for each combination
of state and symbol: for a right-moving merge tile corresponding to state q
and symbol s, the left edge is designed to match the right edge of an action
tile encoding a transition into q, and the bottom edge is designed to match
the tape symbol s of the tile below it. The upper edge shows the combination
(q, s) encoding the information that the machine head is in state q reading
s in this square.

If we let tile 0 denote the start tile representing the machine in square 0
in initial state and let tile 1 denote the action tile corresponding to the unique
transition into state 1, then for every such deterministic Turing machine program
T , the corresponding set of tiles will tile the first quadrant, with tile 0 at position
(0, 0), and the problem of deciding (given arbitrary such T ) if the tile 1 is placed
is Σ0

1 -complete. For CSP models we are interested not in tiling the plane, but
rather in tiling an N ×N grid, and not every such bounded tiling corresponds
to a restriction of some full tiling of the positive quadrant. The main issue that
arises for Robinson’s construction is that one can place a left-moving merge
tile on the right hand boundary, thus, in essence, introducing a second tape
head from the right: there is no control over the state of this second head. This
presents a challenge to our basic strategy (see Section 3.1), as it may allow for
the placement of the designated symmetry-breaking tile 1, even if the original
program T did not reach the special state 1.

There are several ways to fix this by adjusting the labelling of the tiles (such
as adding border tiles, or adding extra information to the tiles, recording whether
they are left or right of the machine head). However as we are concerned with
CSP models (not tilings per se), the easiest fix is to add a constraint asking that
no left moving merge tile be placed at the right hand border. This can be done



by adding a unary relation M on the domain of tiles corresponding to the set of
tiles that are not left moving merge tiles and constrain the variable x[N-1,i] to
be in M .

For basic tiling of an N × N grid, the machine head, starting at position
(0, 0) can never reach a position (i, j) with i > j as it can only move one step
at time and each step involves placement of a new row: if it moves rightward
at every step, the corresponding action tiles are placed in positions (i, i). In
this instance, the extra constraint (no left-moving merge tiles on the boundary)
forces every tiling of an N × N grid to be a restriction of some tiling of the
plane (obviously, this is a property that is very particular to the construction
being used). However one of our arguments involves a distortion of this tiling,
so that each of the original tiles becomes a 2× 1-rectangle, with successive rows
offset by 1 placement. In this situation it is possible for (the distorted versions
of) action tiles to “fall off” the right edge of the N × N grid. As it turns out,
provided we constrain the outer perimeter not to involve the placement of (the
distorted version of) a left-moving merge tile, it is still true that tilings of an
N ×N grid by these rectangular tiles correspond to restrictions of tilings of the
full N × N positive quadrant. This is because, while the actual machine head
may move leftwards again later, the tape configurations are encoded in rows of
this tiling so that each configuration is shifted one step rightwards at every row.
Thus the head is unable to move leftwards quickly enough to re-enter the grid.
(A sketch of the basic idea of this distorted tiling can be seen in Figure 2.)

We now give the details of the argument for proving the undecidability of
recognising the dimension swap symmetry for a single 2-dimensional matrix vari-
able (Section 3.2). The argument is substantially more technical than for the
value inversion symmetry.

We will refer to the set of points {(i, j) ∈ N×N | i > j} as the first octant : it
is the lower half of the positive part of the first quadrant of an integer lattice. We
first show how to translate the basic tiling problem (can the plane be tiled with
placement of tile 0 at (0, 0) with tile 1 placed somewhere) to a corresponding
problem of tiling the first octant of the plane, this time requiring that tile 0 is
placed at (1, 0) (and asking if tile 1 is placed somewhere). To do this we explain
how to translate any finite set of tiles into a new set such that the original set
can tile the first quadrant if and only if the new set can tile the first octant.
The idea is to replace each square tile by a rectangle of two new squares. Let
T = {0, . . . , n− 1} be a set of “tiles” with adjacency relations ∼h and ∼v. Now
consider the 2n-element set T × {L,R}: for convenience we write iL in place of
(i, L), and similarly for iR. We now define the relations ∼h and ∼v as follows.

– For each i we have iL ∼h iR.
– If i ∼h j, then iR ∼h rL.
– If i ∼v j, then iR ∼v jL.
– For each i and each j we define iL ∼v jR.

The idea is demonstrated in Figure 1. In the left picture, four copies of some
tiles have been placed, with a copy of tile 0 at position (0, 0), tile 1 at position
(1, 0), tile 2 at position (0, 1) and tile 3 at position (1, 1) (in this particular
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Fig. 1. The construction for tiling the first octant.

enumeration of the tiles, the tile 1 plays no distinguished role). The right picture
shows the corresponding tiling of the first octant: boundaries between left and
right copies of tiles are dotted: the relation ∼h only allows two halves of the same
tile to be placed horizontally adjacent. It is routinely seen that the constructed
set of tiles can tile the first octant with 0L placed at (1, 0) if and only if the
original set can tile the positive quadrant with tile 0 placed at (0, 0). Moreover,
every tiling by the first set of tiles corresponds in an obvious way to a unique
tiling by the second set and vice versa.
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Fig. 2. A typical solution to the symmetric tiling CSP, starting from the basic tiling
of the plane by square tiles.

We now construct a CSP model based around a tiling of the first octant. The
idea is constraint the points of an N × N grid to be tiled in the first octant,
with tile 0 placed at position (1, 0), but also in the second octant in symmetry
with the first octant: tile 0 will be placed at position (0, 1), and the constraints
for positions in the second octant will switch the roles of horizontal and vertical
adjacency. These can be written as the following constraints:

constraint forall (i,j in 0..N-1 with i>j) (x[i-1,j] ~h x[i,j])
constraint forall (i,j in 0..N-1 with i>j) (x[i,j-1] ~v x[i,j])
constraint forall (i,j in 0..N-1 with i<j) (x[i-1,j] ~v x[i,j])
constraint forall (i,j in 0..N-1 with i<j) (x[i,j-1] ~h x[i,j])
constraint x[0,1]=0_L
constraint x[1,0]=0_L

We introduce a separate tile—tile d—for placement along the diagonal.

constraint forall (i in 0..N-1) (x[i,i]=d)



We constraint the outer perimeter to not include left-moving merge tiles; letting
M denote the set of tiles other than (distorted) left-moving merge tiles, we add:

constraint forall (i in 0..N-1) (x[N-1,i] in M) and (x[i,N-1] in M)

An example of the situation is shown in Figure 2, starting from a conventional
tiling on the left, and how the corresponding solution to the distorted CSP model
might be visualised.

This corresponds to the adjusted form of Step 1 from the Basic Strategy of
Section 3.1. After this distortion, the original tile 1 has a left and right version;
we proceed along the lines of Step 2 using tile 1L in place of tile 1. Let us
duplicate this tile to produce tile 1′L. Every existing adjacency relating tile 1L
is extended to tile 1′L (so tile 1′L may be placed left of tile 1R, for example). At
this stage the CSP model admits the constraint symmetry x[i, j] 7→ x[j, i], and
has solutions for every value of N . We now add one further constraint: that tile
1L cannot be placed in the second octant and tile 1′L cannot be placed in the
first octant.

If the machine running the original Turing machine program T (deterministic
and started on the blank tape in state 0) eventually reaches the distinguished
state 1, then for large enough N , a solution of the standard tiling (with tile
0 at (0, 0)) involves placement of tile 1. Then in our distorted CSP model, we
must assign, for some i > j the value 1L to x[i, j] and the value 1′L to x[j, i].
The dimension swap symmetry fails for this CSP model. Otherwise, if T never
enters state 1, then no solution to the original tiling involves placement of tile
1 (even over N × N grid, provided we constrain the right edge of the grid to
avoid left-moving merge tiles), and similarly no x[i, j] can be given the value
1L or 1′L in any solution to the distorted CSP model. Hence in this case, the
CSP model admits the dimension swap symmetry. This completes the reduction
of the Halting problem to the failure of dimension swap solution symmetries in
CSP models (Section 3.2).

We mention that these techniques seem related to the undecidability results
proved for infinite CSPs by Dantchev and Valencia [1]. Indeed, tiling arguments
provide a reasonable simplification to the Turing machine argument given there
for 2-dimensional infinite CSPs with just successor on the index set: only a single
variable x is required using tilings (and only successor is required to complete the
proof for undecidability of the value inversion symmetry). Moreover, it is easy to
use tiling arguments to show that it is highly undecidable (Σ1

1 -hard) to decide
if an infinite CSP has a solution, even when restricted to a single 2-dimensional
variable and with index arithmetic restricted to successor and order. Indeed, the
problem of tiling the first quadrant such that tile 0 is placed at position (0, 0)
and tile 1 placed infinitely often in the first row is Σ1

1 -complete (Harel [2]) and
can be expressed as an infinite CSP: to the basic tiling problem given in Section
3 (but with no bound on the values of i and j), one must add the constraint

constraint (x[0,0]=0)
constraint forall i exists j>i (x[j,0]=1)

Dantchev and Valencia [1] also show that it is undecidable as to whether or not
an infinite CSP with a single 1-dimensional variable has a solution, provided



that the full power of Presburger arithmetic is allowed on the index set. while
we do not give details, it is possible to adapt this argument in a manner similar
to the Basic Strategy in Section 3.1 to obtain undecidability of some solution
symmetries for 1-dimensional variables (such as value inversion: dimension swap
has no meaning for 1-dimensional variables)
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