
Proving Symmetries by Model Transformation

C. Mears1, T. Niven1, M. Jackson2, and M. Wallace1

{Chris.Mears,Todd.Niven,Mark.Wallace}@monash.edu,
M.G.Jackson@latrobe.edu.au

1 Faculty of IT, Monash University, Australia
2 Department of Mathematics, La Trobe University, Australia

Abstract. The presence of symmetries in a constraint satisfaction prob-
lem gives an opportunity for more efficient search. Within the class of
matrix models, we show that the problem of deciding whether some
well known permutations are model symmetries (solution symmetries on
every instance) is undecidable. We then provide a new approach to prov-
ing the model symmetries by way of model transformations. Given a
model M and a candidate symmetry σ, the approach first syntactically
applies σ to M and then shows that the resulting model σ(M) is semanti-
cally equivalent to M . We demonstrate this approach with an implemen-
tation that reduces equivalence to a sentence in Presburger arithmetic,
using the modelling language MiniZinc and the term re-writing language
Cadmium, and show that it is capable of proving common symmetries
in models.

1 Introduction

Solving a constraint satisfaction problem (CSP) can be made more efficient by
exploiting the symmetries of the problem. In short the efficiency is gained by
omitting symmetric regions of the search space. The automated detection of
symmetries in CSPs has recently become a topic of great interest. However, the
majority of research into this area has been directed at individual instances of
CSPs where the exact set of variables, constraints and domains are known before
the detection takes place. The most accurate and complete methods for detecting
solution symmetries are computationally expensive and so limited in the size of
problem they can tackle (e.g. [10, 8, 1]).

A CSP model represents a class of CSPs and is defined in terms of some
parameters. An instance is generated from the model by assigning values to the
parameters. There are automatic symmetry detection methods for CSP models,
as described in [13, 14]. However they are problem-specific or can only detect a
very small collection of simple symmetries, namely piecewise value and piecewise
variable interchangeability.

All four authors were supported under Australian Research Council’s Discovery
Projects funding scheme (project number DP110102258 for the first, second and
fourth authors and project number DP1094578 for the third author).

Mears et al. [9] proposed a broader framework to detect model symmetries
which only requires explicitly detecting solution symmetries on small instances.
The framework can be described as performing the following steps:

1. Detect symmetries on some collection of small instances of the model,
2. Lift the detected symmetries to model permutations,
3. Filter the model permutations to keep only those that are likely to be sym-

metries for all instances of the model (candidate model symmetries),
4. Prove that the selected model permutations are indeed symmetries for every

instance of the model (model symmetries).

Mears et al. [9] developed an automated implementation of this framework on
matrix models (i.e. the variables of each instance have an underlying matrix
structure) that tackles steps 1, 2 and 3 whilst preliminary attempts at 4, using
graph techniques, can be found in [7]. These graph theoretic approaches were,
however, ad hoc and not automated. Automating step 4 can be approached by
way of automated theorem proving as in [6], where the authors represent their
models in existential second order logic and use a theorem proving application to
verify that a candidate model symmetry is a model symmetry. Whilst potentially
quite powerful, this approach requires a large amount of work to translate a
practical model into the required form.

The distinction between constraint symmetry and solution symmetry proves
to be critical. This paper studies the problem of proving whether a given can-
didate symmetry is a model symmetry. One result that we provide is that, in
general, deciding whether or not some well known candidate symmetries are
model “solution” symmetries is undecidable and indeed undecidable under quite
weak assumptions on the models. These results consider models that can be
viewed as tiling problems and then utilises the standard method of encoding
Turing machines into tiling problems introduced by Robinson [12].

From the other direction, when restricting to constraint symmetries, we pro-
vide a new method that can prove when a given candidate symmetry is a model
symmetry by way of model transformations. Specifically, if we apply our candi-
date symmetry to our model and obtain an “equivalent” model in return, then
we can deduce that our candidate symmetry is indeed a model symmetry (and
indeed a constraint symmetry on every instance of the model). We implement
this idea by attempting to reduce the problem of model equivalence to a first
order sentence in some decidable theory.

Our implementation uses MiniZinc as the modelling language and Cadmium
to perform model transformations and our method focuses on proving simple
matrix symmetries (swapping dimensions, inverting dimensions and permuta-
tions of a dimension) on arbitrary matrix models. Two benefits of our method
are:

1. we act directly on the MiniZinc model, being the same model that could be
used in solving a given instance, and

2. the theoretical steps to transform the model are closely matched to the
Cadmium rules that transform the MiniZinc model.

We present an application of our method to a set of well known bench marks.

2 Background

A CSP is a tuple (X,D,C) where X represents a set of variables, D a set of
values and C a set of constraints. For a given CSP, a literal is defined to be an
ordered pair (x, d) ∈ X × D and represents the expression x = d. We denote
the set of all literals of a CSP P by lit(P) and define var(x, d) = x, for all
(x, d) ∈ lit(P). An assignment A is a set of literals. An assignment over a set
of variables V ⊆ X has precisely one literal (x, d) for each variable x ∈ V . An
assignment over X is called a complete assignment.

A constraint c is defined over a set of variables, denoted by vars(c), and
specifies a set of allowed assignments over vars(c). An assignment A over V ⊆ X
satisfies constraint c if vars(c) ⊆ V and the set {(x, d) ∈ A | x ∈ vars(c)} is
allowed by c. A solution is a complete assignment that satisfies every constraint
in C.

A solution symmetry σ of a CSP P is a permutation on lit(P) that preserves
the set of solutions [1], i.e. σ is a bijection from lit(P) to lit(P) that maps
solutions to solutions. A permutation f on the set of variables X induces a
permutation σf on the set of literals lit(P) in the obvious way, i.e. σf (x, d) =
(f(x), d). A variable symmetry is a permutation of the variables whose induced
literal permutation is a solution symmetry. Similarly, a value symmetry is a
solution symmetry σf (x, d) = (x, f(d)), for some permutation f on D. If d
is a set, then f is a permutation on all possible elements of d. A variable-value
symmetry is a solution symmetry that is neither a variable nor a value symmetry.

The microstructure complement of a CSP P is a graph with vertices X ×D,
and a hyperedge between a set of vertices if that set represents an assignment
disallowed by some constraint, or disallowed because it assigns distinct values
to one variable. A constraint symmetry of a CSP P is an automorphism of the
microstructure of P [1]. Note that every constraint symmetry of a problem is
also a solution symmetry.

A CSP model is a parametrised form of CSP, where the overall structure of
the problem is specified, but particular details such as size are omitted. A model
permutation σ of a CSP model M is a function that takes an instance P of the
model M and produces a permutation on lit(P), i.e. σ(P) is a permutation on
lit(P), for all instances P ofM . A model (constraint) symmetry σ of a CSP model
M is a model permutation such that σ(P) is a solution (constraint) symmetry,
for all instances P of M . For the purposes of this paper, a matrix model is a
model M such that the variables of M form a single n-dimensional matrix of the
following form:

{x[i1, i2, . . . , in] | 1 ≤ ij ≤ dj for all 1 ≤ j ≤ n},

where the dj ’s indicate the size of each dimension and may be determined by
the parameters of the model. See [3] and [4] for more on matrix models.

The models that we will be interested in are those that have parameters
consisting of integers p1, p2, . . . , pn and a fixed number of quantified constraints

of the form

(∀k1, k2, . . . kl)Φ(k1, k2, . . . , kl, p1, p2, . . . , pn)

G({x[I1], x[I2], . . . , x[Im] | Ψ(I1, I2, . . . , Im, k1, k2, . . . , kl, p1, p2, . . . , pn)}) (?)

where

– G is a constraint (possibly global),
– each Ii represents a list of r (not necessarily distinct) variables for some

fixed r (note that we do not allow nested indexing), and
– Φ and Ψ are arithmetic formulæ, with free variables among those within the

corresponding parenthesis.

Example 1. The N-Queens problem of size N is to construct an N ×N board where
we are required to place N mutually non-attacking queens.

Below is a model of the Boolean N -queens problem of size N , where N is the pa-
rameter of the model. The model uses N2 zero-one variables – one for each combination
of row and column – where the variable x[i, j] is one if and only if row i and column j
has a queen placed.

X[N] ={x[i, j] | i, j ∈ R = {1, 2, . . . , N}}
D[N] ={0, 1}

C[N] ={(∀j ∈ R)
∑

1≤i≤N

x[i, j] = 1,

(∀i ∈ R)
∑

1≤j≤N

x[i, j] = 1,

(∀k ∈ {3, . . . , 2N − 1})
∑
{x[i, j] | i, j ∈ R, i+ j = k} ≤ 1,

(∀k ∈ {2−N, . . . , N − 2})
∑
{x[i, j] | i, j ∈ R, i− j = k} ≤ 1}.

This problem has many model symmetries; one of them is that the i and j dimensions

can be interchanged (diagonal reflection of the square).

The quantified constraints in the above example are equivalent to those of (?).
Indeed,

(∀j ∈ R)
∑

1≤i≤N

x[i, j] = 1

from above is equivalent to

(∀k)1 ≤ k ∧ k ≤ N
∑
{x[i, j] | 1 ≤ i ∧ i ≤ N ∧ j = k} = 1,

where the constraint G in this case is the global constraint of the sum equaling 1.

3 Undecidability of model symmetries

In this section we show that two common permutations cannot be algorithmi-
cally recognised as solution symmetries of CSP models. More precisely we show
that the class of CSP models (with a single 2-dimensional matrix variable x)

admitting the given solution symmetry is not recursively enumerable. As the
consequences of a proof system form a recursively enumerable set, a sort of
incompleteness theorem follows: any proof system for proving the existence of
solution symmetries from CSP models is incomplete. We prove this for the do-
main inversion symmetry and the dimension swap symmetry, though other cases
(those in Section 4.1) can be treated using similar ideas.

Mancini and Cadoli [6] have provided similar undecidability results with re-
spect to problem specifications which formulates classes of CSPs via scond order
logic. The results given here differ in that we only require a single matrix of
variables, the constraints have extremely simple structure and the models relate
to natural geometric constraint satisfaction problems of independent interest
(symmetric tilings of the plane for example).

We consider CSP models related to tiling grids by square tiles with matching
conditions dictating which tile can be placed in horizontal adjacency and which
can be placed in vertical adjacency. This situation may be viewed as a kind of
directed graph except with two binary relations ∼h and ∼v (representing allowed
horizontal and vertical adjacencies resp.) instead of one.

The basic problem of tiling an N ×N grid with tiles from {0, . . . , n − 1} is
as follows (here x[i,j] = k represents tile k being placed at position (i, j)).

X[N] = {x[i, j] | 0 ≤ i, j ≤ N − 1}
D[N] = {0, 1, . . . , n− 1}
C[N] = {(∀i, j ∈ {0, . . . , N − 1}, i > 0)x[i− 1, j] ∼h x[i, j]

(∀i, j ∈ {0, . . . , N − 1}, j > 0)x[i, j − 1] ∼v x[i, j]}

It is well known that the problem of deciding if the full positive quadrant of
the plane may be tiled starting from an arbitrary finite T is undecidable. This
is usually proved by a simple encoding of a Turing machine program into the
tiles so that successfully tiled rows of the plane correspond to successful steps
of computation by the Turing machine. If the Turing machine eventually halts
then the tiling cannot be completed. We exploit this idea by instead allowing
completion of the tiling, but only in a way that violates some symmetry always
present in nonhalting situations.

The results are proved using variations of this CSP model. Note that failure to
exhibit a given solution symmetry is a Σ0

1 property. Thus it remains to show Σ0
1 -

hardness. We reduce the Halting Problem to the failure of a solution symmetry.

3.1 Basic strategy

The arguments are extensions of the following idea. We use an easy variation of
the Halting problem for deterministic Turing machine programs: given a Turing
machine program T with no halting states, but with some distinguished state q,
is the state q ever reached when T is started on the blank tape? This problem
is Σ0

1 -complete.
Step 1. The program T can be encoded into a set of tiles TT in a standard

way (see Robinson [12] or Harel [5] for example). Successive tiled rows correspond

to successive configurations of the machine running T . Let us assume that tile
0 encodes the Turing machine in initial state reading the blank symbol and
that tile 1 encodes a transition into state q. Then the following problem is Σ0

1 -
complete: given T , is there a number N and a tiling of the N ×N grid using TT
with tile 0 at position (0, 0) and involving placement of tile 1?

Step 2. Duplicate some part (or all of) TT , creating the solution symmetry of
interest. Then adjust the adjacency conditions applying to tile 1 and compared
to its duplicate so that the solution symmetry is violated in sufficiently large
models if and only if state q is reached by T .

3.2 Swapping of dimension: x[i, j] 7→ x[j, i].

Aside from the domain structure and the input parameter N , the constraints
used in this construction involve only order and successor on indices. First, the
tiling created at step 1 of the basic strategy is adjusted so that it exhibits the
constraint symmetry x[i, j] 7→ x[j, i]: moreover in every solution, the value of
x[i, j] is equal to the value of x[j, i], and in no solution can tile 1 be placed on the
diagonal. Step 2 of the basic strategy involves duplication of the distinguished tile
1: say that tile 2 is the exact duplicate of tile 1, with every adjacency condition
for 1 applying identically to tile 2. Add one further constraint c dictating that
tile 1 cannot be placed above the diagonal and that tile 2 cannot be placed below
the diagonal.

If the Turing machine program T does not reach state q, then tile 1 cannot
be placed, and the final constraint c is redundant. In this case the dimension
swapping solution symmetry holds. However if T does eventually reach state q,
then for sufficiently large N , a tiling of the N × N grid will involve, for some
i > j, placement of 1 at some position x[i, j] and 2 at position x[j, i]. This
violates the solution symmetry.

3.3 Inversion of domain: x[i, j] 7→ n− 1− x[i, j].

Aside from the domain structure and the input parameter N , the constraints
used in this construction involve only successor on indices. Let us assume that
the tiling created at step 1 of the basic strategy has tiles 0, . . . , n − 1. For step
2 we duplicate these tiles to produce tiles 0, . . . , n − 1, n, . . . , 2n − 1, with tile
i ≤ n − 1 corresponding to tile 2n − 1 − i: there are no adjacencies allowed
between tiles from 0, . . . , n − 1 and those from n, . . . , 2n − 1, but within these
two blocks, the adjacency patterns are identical (except in reverse order).

Weaken the constraint x[0, 0] = 0 to x[0, 0] ∈ {0, 2n − 1}: this CSP model
exhibits inversion of domain as a constraint symmetry, and every solution corre-
sponds to a tiling of an N ×N grid with either the tiles 0, . . . , n− 1 or the tiles
n, . . . , 2n−1. Now remove all adjacency capabilities for tile 2n−2 (the duplicate
of the special tile 1): so 2n−2 cannot be placed. The inversion of domain solution
symmetry can hold if and only if no solution involves placement of tile 1, which
is equivalent to program T reaching state q.

4 Proving Symmetries by Model Transformation

Motivated by the matrix model permutations investigated in [9] (i.e. dimension
swap, dimension inversion and dimension permutations), we describe an auto-
mated method that is capable of proving when such permutations are indeed
model constraint symmetries. Specifically, given a common matrix permutation
σ on the variables of a model M , we prove that σ is a symmetry of M by
showing that σ(M) is semantically equivalent to M . We say that a quantified
constraint c in a model M is equivalent to a quantified constraint c′ in the model
σ(M) if, for every instance of M , the quantified constraint c is equal to c′ in the
corresponding instance of σ(M). Note that we are concerned here with “con-
straint symmetries” in contrast to the previous section where we found that it is
undecidable to determine if such permutations are model solution symmetries.

Given a model with a set of quantified constraints C, and a symmetry σ, the
method has the following steps:

1. Partition the quantified constraints into equivalence classes ΘG where a
quantified constraint c ∈ ΘG if the constraint (refer to (?) in Section 2)
in c is G.

2. Compute σ(c) for each quantified constraint c ∈ C, giving the set C ′ =
{σ(c) | c ∈ C} with equivalence classes Θ′G = σ(ΘG) (we assume that σ
satisfies: if G is the constraint in c then G is also the constraint in σ(c)).

3. Normalise every quantified constraint c′ ∈ C ′ by reducing the expressions
used as array indices to single variables by substitution.

4. For each bijection ϕ : C → C ′, that preserves the equivalence classes ΘG,
produce a sentence Φϕ(c) (in some decidable theory) that expresses (if true)
the equivalence of c ∈ C with its matched constraint ϕ(c) ∈ C ′.

5. Prove that the sentence
∨

ϕ

∧
c∈C Φϕ(c) is true.

Since item 4 requires two quantified constraints have the same constraint G
before we attempt to match them, this method will not be complete for model
constraint symmetries.

We now describe steps 2–4 in detail. We restrict ourselves to models in which
the variables have integer, or set of integer, domains and the quantified con-
straints are of the form (?) where Φ and Ψ are first order formulæ in Presburger
arithmetic (considered here to be the first order theory of +,−,≤, 0, 1 over the
integers; a well known decidable theory, see e.g. [2]).

4.1 Computing σ(c)

We consider the following five types of permutations acting on a matrix of vari-
ables (these include permutations from Section 3.)

– Swapping of dimensions j and k:
x[i1, i2, . . . , ij , . . . , ik, . . . , in] 7→ x[i1, i2, . . . , ik, . . . , ij , . . . , in],
where j < k and dj = dk,

– Inverting of dimension j:
x[i1, i2, . . . , ij , . . . , in] 7→ x[i1, i2, . . . , dj − ij + 1, . . . , in],

– All permutations of dimension j:
x[i1, i2, . . . , ij , . . . , in] 7→ x[i1, i2, . . . , ϕ(ij), . . . , in], where ϕ represents an arbitrary
permutation on {1, 2, . . . , dj},

– All permutations of values:
x[i1, i2, . . . , in] 7→ ϕ(x[i1, i2, . . . , in]), where ϕ represents an arbitrary permutation
on the domain of values.

– Inverting of values:
x[i1, i2, . . . , in] 7→ u− (x[i1, i2, . . . , in]) + l, where l and u are the lower and upper
bounds of the value domain.

These permutations appear commonly in matrix models. We define the quan-
tified constraint σ(c) by replacing each occurrence of x[i1, i2, . . . , in] in c with
its image σ(x[i1, i2, . . . , in]) as given above.

Example 2. One of the constraints of the N -Queens problem (Example 1) is:

(∀k ∈ {2−N, . . . , N − 2})
∑
{x[i, j] | i, j ∈ R, i− j = k} ≤ 1

where R = {1, 2, . . . , N}. Let σ be the symmetry that swaps dimensions 1 and 2:
x[i, j] 7→ x[j, i] By substituting x[j, i] for x[i, j], we see that σ(c) is:

(∀k ∈ {2−N, . . . , N − 2})
∑
{x[j, i] | i, j ∈ R, i− j = k} ≤ 1

4.2 Substituting complex expressions

The goal of this step is to reduce all array accesses x[e1, e2, . . . , en], where each ej
is an expression, to the form x[i1, i2, . . . , in] where each ij is a single variable
(or constant) and the name of the variables ij are in lexicographical order. In
particular, the name of a variable ij is lexicographically less than the name of ik
if j < k.

We introduce variables ij that will ultimately take the place of the expres-
sions ej . We assume an expression ej is a permutation f of a quantified vari-
able qj . For example, ej could be the expression ϕ(qj) where 1 ≤ qj ≤ N and ϕ
is a permutation on the set {1, 2, . . . , N}.

We introduce a new variable ij and let ij = ej ; therefore qj = f−1(ij). Using
this identity, we replace all occurrences of qj throughout the constraint with
f−1(ij) and as a result, ej becomes ij .

With the names of the introduced variables are generated in lexicographical
order, we perform the substitution of the expressions ej in order that they appear
in the array access; this ensures that after simplification, the names of the ij
variables in x[i1, i2, . . . , in] are in lexicographical order.

Example 3. Consider again one of the constraints of the N -Queens problem (Exam-
ple 1):

(∀k ∈ {2−N, . . . , N − 2})
∑
{x[i, j] | i, j ∈ R, i− j = k} ≤ 1

where R = {1, 2, . . . , N}. Let σ be the symmetry that inverts dimension 1:

x[i, j] 7→ x[N − i+ 1, j]

By substituting x[N − i+ 1, j] for x[i, j], we see that σ(c) is:

(∀k ∈ {2−N, . . . , N − 2})
∑
{x[N − i+ 1, j] | i, j ∈ R, i− j = k} ≤ 1

Let us now substitute the first expression in the array access. We introduce a new
variables α = N − i + 1 and β = j. We see that α is a function of the quantified
variable i, and that i = N − α+ 1. Next, we replace each occurrence of the quantified
variable i with N − α+ 1 and each occurrence of j with β, giving:

(∀k ∈ S)
∑
{x[α, β] | N − α+ 1, β ∈ R,N − α+ 1− β = k} ≤ 1

where S = {2−N, . . . , N − 2}.

4.3 Equivalence via Presburger forumlæ

In the previous subsections we described how we apply a candidate symmetry to
the quantified constraints and to rewrite them into a reduced form that matches
the form of one or more of the original constraints. We now want to determine
if two model constraints are equivalent; if checking this can be formulated into a
first order statement in some decidable theory, then a theorem prover can prove
or disprove equivalence.

Example 4. In Example 3 we obtained the quantified constraint

(∀k ∈ S)
∑{

x[α, β] | N − α+ 1, β ∈ R and N − α+ 1− β = k
}
≤ 1

where R = {1, . . . , N} and S = {2 − N, . . . , N − 2}. Renaming α to i and β to j we
obtain

(∀k ∈ S)
∑{

x[i, j] | N − i+ 1, j ∈ R and N − i+ 1− j = k
}
≤ 1.

It so happens that this quantified constraint is equivalent to one from the original
model, namely

(∀l ∈
{

3, . . . , 2N − 1})
∑{

x[i, j] | i, j ∈ R and i+ j = l
}
≤ 1.

Since the relations corresponding to the sum global constraint are identical in the
two constraints whenever they have the same arity, the equivalence of the quantified
constraints is equivalent to their scopes being the same; which corresponds to the
following sentences holding in the integers:

(∀i, j,N)(∀k ∈ S)(N − i+ 1 ∈ R) ∧ (j ∈ R) ∧ (N − i+ 1− j = k)

⇒ (∃l ∈ {3, . . . , 2N − 1})(i ∈ R) ∧ (j ∈ R) ∧ (i+ j = l)

and

(∀i, j,N)(∀l ∈ {3, . . ., 2N − 1})(i ∈ R) ∧ (j ∈ R) ∧ (i+ j = l)

⇒ (∃k ∈ S)(N − i+ 1 ∈ R) ∧ (j ∈ R) ∧ (N − i+ 1− j = k)

These sentences are both true and can easily be seen to be equivalent to sentences in

Presburger arithmetic.

4.4 An exploration of N-Queens

In this section we further explore the model symmetry σ(i, j) = (j, i) for the
N -queens model described in Section 2.

This model involves two global constraints, both involving
∑

. This gives us
the two equivalence classes

Θ(=1) ={(∀j ∈ R)
∑

1≤i≤N

x[i, j] = 1, (∀i ∈ R)
∑

1≤j≤N

x[i, j] = 1} and

Θ(≤1) ={(∀k ∈ {3, . . . , 2N − 1})
∑
{x[i, j] | i, j ∈ R, i+ j = k} ≤ 1,

(∀k ∈ {2−N, . . . , N − 2})
∑
{x[i, j] | i, j ∈ R, i− j = k} ≤ 1}.

Applying σ to C we obtain C ′ = σ(Θ(=1)) ∪ σ(Θ(≤1)), where

σ(Θ(=1)) ={(∀j ∈ R)
∑

1≤i≤N

x[j, i] = 1, (∀i ∈ R)
∑

1≤j≤N

x[j, i] = 1}

and

σ(Θ(≤1)) ={(∀k ∈ {3, . . . , 2N − 1})
∑
{x[j, i] | i, j ∈ R, i+ j = k} ≤ 1,

(∀k ∈ {2−N, . . . , N − 2})
∑
{x[j, i] | i, j ∈ R, i− j = k} ≤ 1}.

Notice that, the constraints in C ′ are already essentially normalized (the indices
are not lexicographically ordered, however this will not concern us), so we just
need to find a bijection ϕ from C to C ′ that maps Θ(=1) to σ(Θ(=1)) and Θ(≤1)
to σ(Θ(≤1)) such that for all c ∈ C, the quantified constraint ϕ(c) is equivalent
to c.

Let ϕ be a bijection from C to C ′ such that ϕ(Θ(=1)) = σ(Θ(=1)) and
ϕ(Θ(≤1)) = σ(Θ(≤1)) (there are only 4 such maps). Since our quantified con-
straints are equivalent to those of the form (?), to determine if c ∈ C is equivalent
to ϕ(c) ∈ C ′ amounts to proving sentences in Presburger like those we found in
Section 4. In this case, the map ϕ that matches c ∈ Θ(≤1) with its corresponding
σ(c) and matches c ∈ Θ(=1) with c′ ∈ Θ(≤1) where c′ 6= σ(c), will produce true
sentences, whilst all other ϕ will produce a sentence that is false.

5 Implementation

The transformations described in the previous section are implemented as Cad-
mium rules that act on a MiniZinc model. Before showing the details of our
implementation, we describe briefly MiniZinc and Cadmium.

A MiniZinc model is a set of items. The items we are interested in are con-
straint items: it is these that we will be manipulating. Consider this example
constraint item:

constraint forall (i,j in 1..N) ((sum (k in 1..N) (x[i,j,k]) = 1));

The token constraint introduces a constraint item. The forall indicates a
quantification of some variable(s) over some range(s) of values. The first paren-
thesised part (i,j in 1..n) is called a generator and introduces the two vari-
ables that are to be quantified, and that both range over the set of integers from 1
to N inclusive. The body of the quantification is the second parenthesised part.
The left hand side of the = constraint is a sum expression that introduces an
index variable k which also ranges over the set 1 to N , and the expression as a
whole evaluates to the sum of x[i,j,k] for a given i and j over those values of
k. The right hand side is simply the constant 1. This constraint item therefore
represents the constraint:

(∀i, j ∈ R)
∑
k∈R

x[i, j, k] = 1 where R = {1, 2, . . . , N}.

Since we only consider quantified constraints of the form (?) from Section 2, we
only operate on a subset of Minizinc.

MiniZinc models are translated into terms to be manipulated by Cadmium
rules. A Cadmium rule has the following form:

Context \ Head <=> Guard | Body.

The meaning of a rule is that wherever Head occurs in the model it should be
replaced by Body, but only if Guard is satisfied and if Context appears in the
conjunctive context of Head. Roughly, the conjunctive context of a term is the
set of all terms that are joined to it by conjunction. The Context and Guard

parts are optional. Consider the following example Cadmium rules:

-(-(X)) <=> X.
constraint(C) <=> ID := unique_id("con") |

(constraint_orig(ID,C) /\ constraint_to_sym(ID,C)).

The first rule implements a basic arithmetic identity. Identifiers such as X that
begin with an uppercase letter are variables and can match any term. The head
-(-(X)) matches any term X that is immediately preceded by two negations,
and such a term is replaced by the body X. The second rule is more com-
plex. It matches any constraint item constraint(C) and replaces it with the
conjunction constraint_orig(ID,C) /\ constraint_to_sym(ID,C). The body
of the constraint item C is duplicated into two items constraint_orig(ID,C)

and constraint_to_sym(ID,C), where the new names constraint_orig and
constraint_to_sym are arbitrary and do not have any interpretation in Mini-
Zinc. The guard ID := unique_id("con") calls the standard Cadmium function
unique_id to supply a unique identifier to be attached to the constraints. This
guard always succeeds; its purpose is to assign a value to ID.

Each step of the method corresponds to a set of Cadmium rules. In this sec-
tion we show excerpts of the relevant parts of the Cadmium rules that implement
these steps. Particular details of Cadmium will be explained as necessary.

5.1 Computing σ(c)

First, the constraints are duplicated and the symmetry is applied.

% Every constraint C is given a unique ID and is duplicated.
constraint(C) <=> ID := unique_id("con") |

(constraint_orig(ID,C) /\ constraint_to_sym(ID,C)).
% Every constraint in the duplicated set has the symmetry applied.
constraint_to_sym(ID,C) <=> constraint_sym(ID,sigma(C)).

The rule for sigma depends on the particular symmetry to be tested. Here are
three possible definitions, corresponding to the first three kinds of permutation
in Section 4.1. The “all-permutations” symmetries are represented by a syntactic
construct that represents an arbitrary permutation.

% Dimensions 1 and 2 swap: x[i,j,k] -> x[j,i,k]
sigma(aa(id("x"), t([I,J,K]))) <=> aa(id("x"), t([J,I,K])).
% Inverting of dimension 1: x[i,j,k] -> x[n-i+1,j,k]
sigma(aa(id("x"), t([I,J,K]))) <=>

aa(id("x"), t([id("n")+(-I)+i(1),J,K])).
% All permutations of dimension 1: x[i,j,k] -> x[phi(i),j,k]
sigma(aa(id("x"), t([I,J,K]))) <=>

aa(id("x"), t([permutation(phi,I),J,K])).

% Traverse the entire constraint term to apply the symmetry.
sigma(E) <=> ’$arity’(E) ‘$==‘ 0 | E.
sigma(E) <=> [F|A] := ’$deconstruct’(E) |

’$construct’([F | list_map(sigma, A)]).

The term aa(id("x"), t([I,J,K])) represents a MiniZinc array access of the
form x[I,J,K], where I, J and K are arbitrary terms. The id(S) term represents
an identifier with name S (a string), and the t([...]) term represents a tuple
(in this case the indices of the array).

The final two rules implement a top-down traversal of a term. Zero-arity
terms, such as strings, are handled in the first rule: they are left unchanged.
Compound terms, such as constraint_to_sym(ID,C), are broken into their
functor (constraint_to_sym) and their arguments (ID and C), and the sym-
metry is applied recursively to the arguments. The special $deconstruct and
$construct functions respectively break a term into its parts or reconstruct a
term from its parts.

5.2 Substituting complex expressions

In this step we find the expressions used in array accesses and replace them with
single variables. Firstly, we find those expressions used in the array accesses.

% Extract array indices in the order that they are used.
% I,J,K may be complex expressions.
extract_indices(aa(_Array, t([I,J,K]))) <=> [I,J,K].
% (Traversal omitted.)

The result is a list of expressions that should be replaced with single variables.
This list is passed as the first argument to the rename_list rule. Note that the
order that the expressions were found in the array access is also the order in
which they are renamed.

rename_list([], T) <=> T.
% Replace in term T the complex expression X with a fresh variable Y.
rename_list([X|Xs], T) <=>

Y := unique_id("index") /\
renaming(From, To) := compute_renaming(X, id(Y)) |

substitute_ids([From ‘maps_to‘ To], T).

The term X is the expression ej to be replaced. The first part of the guard
Y := unique_id("index") generates the fresh variable ij . As described in Sec-
tion 4.2, we assume that ej = f(qj) and replace all occurrences of qj with
f−1(ij). The rule compute_renaming computes this replacement f−1(ij); the
standard Cadmium rule substitute_ids performs the replacement throughout
the term T.

The compute_renaming begins with the complex expression ej as the first
argument, and the replacement variable ij as the second argument. Parts of the
expression are moved to the second argument until the first argument is a single
variable (a bare identifier).

% The inverse of phi(X) is invphi(X).
compute_renaming(permutation(Phi, X), Y) <=>

compute_renaming(X, inverse_permutation(Theta, Y)).

% If X is a global variable (e.g. a parameter), then move it to
% the right hand side.
% X + Y = Z --> Y = Z - X.
decl(int,id(X),_,global_var,_) \

compute_renaming(id(X)+Y, Z) <=> compute_renaming(Y, Z + (-id(X))).
% -X = Y -> X = -Y.
compute_renaming(-(id(X)), Y) <=> compute_renaming(id(X), -(Y)).
% X + Y = Z --> X = Z - Y.
compute_renaming(id(X)+Y, Z) <=> compute_renaming(id(X), Z + -(Y)).
% -X + Y = Z --> X - Y = -Z.
compute_renaming(-(id(X))+Y, Z) <=> compute_renaming(id(X) + -(Y), -(Z)).

% When the left hand side is a mere identifier, the right hand side
% is the expression to replace it with.
compute_renaming(id(X), Y) <=> renaming(id(X), Y).

Note the use of the contextual guard decl(int,id(X), ,global var,) in the
second rule. This means that the identifier X is moved to the second argument
only if it is declared as a global variable somewhere in the conjunctive context
of the term being matched to the head. This contextual matching feature of
Cadmium allows parts of the model that occur in distant parts of the model to
be used when determining if a rule should apply. Also note that a pattern such
as id(X)+Y exploits the commutativity and associativity of addition; Cadmium
rearranges the expression as needed to make the pattern match.

5.3 Producing and proving Presburger formulæ

Finally, we attempt to match each quantified constraint in C with a quantified
constraint in C ′ that is in the same equivalence class ΘG. Ensuring that the two
quantified constraints are in the same class is done by inspecting the structure of
the terms. The test for equivalence of the quantified constraints is then reduced
to a Presburger sentence. We extract from each quantified constraint the expres-
sions for Φ and Ψ (see (?)) and construct a Presburger sentence as described in
Section 4.3. The sentence is then passed to the Presburger solver Omega, which
uses the omega test [11] to prove or disprove the sentence.

For a given symmetry σ, if all constraints in σ(C) can be shown to match a
constraint in C, then we state that σ is a model symmetry.

Table 1. Summary of Symmetries Proved

Problem Variable Symmetries

Latin Squares (Boolean) x[i,j,k] 7→ x[j,i,k] x[i,j,k] 7→ x[i,k,j]

x[i,j,k] 7→ x[N-i+1,j,k] x[i,j,k] 7→ x[ϕ(i),j,k]
x[i,j,k] 7→ x[i,ϕ(j),k] x[i,j,k] 7→ x[i,j,ϕ(k)]

Latin Squares (integer) x[i,j] 7→ x[j,i] x[i,j] 7→ x[ϕ(i),j]
x[i,j] 7→ x[i,ϕ(j)] x[i,j] 7→ ϕ(x[i,j])

Steiner Triples x[i,j] 7→ x[ϕ(i),j] x[i,j] 7→ x[i,ϕ(j)]

BIBD x[i,j] 7→ x[ϕ(i),j] x[i,j] 7→ x[i,ϕ(j)]

Social Golfers x[i,j] 7→ x[ϕ(i),j] x[i,j] 7→ x[i,ϕ(j)]
x[i,j] 7→ ϕ(x[i,j])

N -Queens (Boolean) x[i,j] 7→ x[j,i] x[i,j] 7→ x[N-i+1,j]

N -Queens (integer) x[i] 7→ x[N-i+1] x[i] 7→ N-x[i]+1

6 Results

We have tested our model transformation approach for symmetries found by
Mears et al. [9] in a suite of benchmark problems modelled in MiniZinc. Table 1
lists, for each problem, the symmetries that our implementation was able to
prove hold.

The results in Table 1 show that we can verify the existence of some common
variable and value symmetries in selected well-known matrix models. In addition,
we have tested symmetries that are known not to hold on the models and verified
that the implementation fails to prove them. Note that for the set variables in the
Social Golfers problem, the value symmetry acts on the elements of the set rather
than the sets themselves. The running time is negligible; for each benchmark,
the execution takes around one second.

Our implementation does not deal with variable-value symmetries that can-
not be expressed as a composition of a variable symmetry with a value symmetry
e.g. the solution symmetry σ taking the literal x[i] = j to x[j] = i. One way
to step around this problem is to translate one’s model into a Boolean model
(in an appropriate way), where now the value symmetries and variable-value
symmetries are simply variable symmetries.

7 Conclusion

The automatic detection of CSP symmetries is currently either restricted to
problem instances, is limited to the class of symmetries that can be inferred
from the global constraints present in the model, or requires the use of (incom-
plete) automated theorem provers. This paper, whilst showing that the funda-
mental problem is undecidable, provides a new way of proving the existence of
model symmetries by way of model transformations. We show that simple ma-
trix permutations, such as swapping and inverting dimensions, can be shown to
be model symmetries using this method. Pleasingly, our method has also been
successful in showing that an arbitrary permutation (which represents a large

group of symmetries) applied to a dimension of the matrix of variables is a model
symmetry.

Acknowledgements

The authors would like to thank Leslie De Koninck and Sebastian Brand for
assisting with the Cadmium development, and the G12 Project for supplying
some of the MiniZinc models. We also thank Maria Garcia de la Banda for her
invaluable suggestions.

References

1. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K., Smith, B.: Symmetry definitions
for constraint satisfaction problems. In: Principles and Practice of Constraint Pro-
gramming - CP 2005 (2005)

2. Enderton, H.: A Mathematical Introduction to Logic (second edition). Academic
Press, Inc (2001)

3. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Matrix mod-
elling. In: Proc. Formul01, CP01 Workshop on Modelling and Problem Formulation
(2001)

4. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.:
Breaking row and column symmetries in matrix models. In: Principles and Practice
of Constraint Programming - CP 2002 (2002)

5. Harel, D.: Effective transformations on infinite trees with applications to high
undecidability, dominoes and fairness. J. ACM pp. 224–248 (1986)

6. Mancini, T., Cadoli, M.: Detecting and breaking symmetries by reasoning on prob-
lem specifications. In: Proceedings of the International Symposium on Abstraction,
Reformulation and Approximation (SARA 2005) (2005)

7. Mears, C.: Automatic Symmetry Detection and Dynamic Symmetry Breaking for
Constraint Programming. Ph.D. thesis, Monash University (2009)

8. Mears, C., Garcia de la Banda, M., Wallace, M.: On implementing symmetry de-
tection. Constraints 14 (2009)

9. Mears, C., Garcia de la Banda, M., Wallace, M., Demoen, B.: A novel approach
for detecting symmetries in CSP models. In: Fifth International Conference on In-
tegration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (2008)

10. Puget, J.F.: Automatic detection of variable and value symmetries. In: Principles
and Practice of Constraint Programming - CP 2005 (2005)

11. Pugh, W.: The omega test: a fast and practical integer programming algorithm for
dependence analysis. Communications of the ACM pp. 102–114 (1992)

12. Robinson, R.: Undecidability and nonperiodicity for tilings of the plane. Inven-
tiones Math. 12, 177–209 (1971)

13. Roy, P., Pachet, F.: Using symmetry of global constraints to speed up the reso-
lution of constraint satisfaction problems. In: ECAI98 Workshop on Non-binary
Constraints (1998)

14. Van Hentenryck, P., Flener, P., Pearson, J., Agren, M.: Compositional derivation
of symmetries for constraint satisfaction. In: Proceedings of the International Sym-
posium on Abstraction, Reformulation and Approximation (SARA 2005) (2005)

