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Abstract

Automatic symmetry detection has received a significant amount of
interest, which has resulted in a large number of proposed methods. This
paper reports on our experiences while implementing the approach of
Puget [13]. In particular, it proposes a modification to the approach
to deal with general expressions, discusses the insights gained, and gives
the results of an experimental evaluation of the accuracy and efficiency of
the approach.

1 Introduction

Symmetries in constraint satisfaction problems (CSPs) can be used to speed up
the search for solutions. This is achieved by avoiding the exploration of areas
of the search space that are symmetric to areas that are already (or will be)
explored [3]. This is correct because if the explored area led to failure, the
symmetric area must also lead to failure. If, on the other hand, it led to a
solution s, the symmetric area is known to only contain solutions that can be
more efficiently generated by applying the symmetries to s.

A common classification of symmetries distinguishes variable symmetries,
value symmetries, and variable-value symmetries, which refer respectively to
permutations among only the variables in the CSP, among only the values of
each variable, and among variable-value pairs, which preserve the set of so-
lutions [12]. Related to these concepts are the notions of value interchange-
ability [5] where all values of a variable are equivalent (i.e., every permutation
among the values is a symmetry), piecewise value interchangeability [11] where
only some subsets of values are interchangeable, and their direct variable coun-
terparts (variable interchangeability and piecewise variable interchangeability).

The importance of automatically detecting symmetries has generated a con-
siderable amount of interest and has resulted in a number of different methods
that automatically detect one or more kinds of symmetries. These methods can
be split into two main categories: those that detect the symmetries of a given
CSP (or CSP instance) [3, 5, 6, 15, 13], and those that detect symmetries of
a class of CSPs (or CSP model) [16, 11]. Each category has advantages and
disadvantages. The main advantage of model-based methods is that the sym-
metry detection process only needs to be performed once for the whole class,
since each symmetry detected for a CSP model is known to also be a symmetry
of all its CSP instances. Instead, instance-based methods need to be re-run for
each instance. This creates efficiency problems, especially since the more pow-
erful methods (such as [13]) can become impractical for large instances. The
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main advantage of instance-based methods is that they can take the particular
instance data into account and, therefore, might be able to detect a greater
number of symmetries (including some not present in the model). Furthermore,
current model-based methods are relatively limited in the kind of symmetries
they detect (piecewise variable and value interchangeability) and in the accu-
racy of their detection process (which depends on the problem being modelled
using global constraints, and on the accuracy of their composition functions).

Our long term aim is to develop a method that (a) detects a broader range
of symmetries than those detected by current model-based methods, (b) detects
symmetries that apply to the CSP model, (c) does not require the model to
use a particular problem formulation (such as global constraints), and (d) is
practical. In order to achieve this we decided to build on powerful instance-
based symmetry detection techniques to discover symmetries for models. The
idea is to (1) use powerful instance-based symmetry detection methods on a
series of small problem instances to elicit candidate symmetries, (2) parametrise
these candidate symmetries to be defined over the model rather than over the
data of any particular instance, and (3) determine whether these are indeed
symmetries of the model.

This paper presents a first step towards this long term aim: the implemen-
tation of a powerful instance-based symmetry detection method. In particular,
it reports on work performed while studying three different graph representa-
tions of CSP instances: Puget’s extensional method introduced in [13], and
the microstructure and microstructure complement introduced by Jégou [9] and
extended by Cohen et al. [2]. The microstructure complement is a very powerful
and general graph representation capable of detecting symmetries of a CSP by
representing the set of disallowed assignments of each constraint in the CSP.
Cohen et al. prove that automorphisms of this graph correspond to symmetries
of the CSP. However, the requirement to only use disallowed assignments means
the graph can be unnecessarily big. Instead, the microstructure requires each
constraint to be represented by the set of allowed assignments. However, au-
tomorphisms of this graph have not been proved to correspond to symmetries
of the CSP. In fact, we later show this not to be the case. Puget’s extensional
approach admits a more flexible representation of constraints in which one can
choose to use the allowed or the disallowed assignments of each constraint in
the CSP. The disadvantage of this approach is that some of its features, such
as the explicit representation of variable nodes and constraint nodes, limit the
kind of symmetries that can be detected.

Our aim is to develop a graph representation that combines the best of
these two approaches. In particular, the contributions of this paper are as
follows. We first introduce the allowed assignments graph, which is extends
the microstructure in such a way that its automorphisms can be proved to
correspond to symmetries of the CSP while, at the same time, avoiding too much
growth in the size of the graph. We then define a second graph representation,
the full assignments graph, which (as Puget’s extensional method) can use the
set of allowed or disallowed assignments depending on the particular constraint
considered, but without restricting the symmetries that can be represented by
the graph. We also prove that every automorphism of the full assignment graph
corresponds to a symmetry of the CSP, while there may exist symmetries which
are not automorphisms of the graph.

We then propose two techniques for pruning different kinds of nodes in the
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full assignment graph (that can also be applied to the other two): one based on
establishing n-ary arc-consistency, and another based on reducing the arity of
global constraints by using a logically equivalent conjunction of constraints of
smaller arity. We prove that the former approach does not eliminate any variable
or value symmetries (although it might eliminate non-compositional variable-
value symmetries) if all constraints represented in the graph have different scope.
We also show how the latter technique can lead to an increase in the number of
symmetries detected.

When compared to Puget’s extensional representation [13], the full assign-
ments graph increases the number of constraint symmetries that can be detected
by, for example, dropping the use of variable nodes and eliminating represen-
tational differences among constraints. Furthermore, it is less dependant on
constraint syntax. The comparison with Puget’s boolean representation, also
given in [13], is less clear and will be discussed in detail in Section 2.3. Finally,
the paper gives the results of an experimental evaluation that compares Puget’s
extensional and boolean representations with ours over a number of benchmarks.

The rest of the paper proceeds as follows. In the next section we discuss
previous work on CSP symmetry detection and symmetry breaking, including a
detailed discussion of Puget’s method for constructing the graph associated with
a given CSP. Section 3 provides the definition of the allowed assignments graph,
the disallowed assignments graph, and the full assignments graph, together with
our insights into their properties and the relationship with related work. Section
4 describes our two techniques to represent graphs of CSPs more concisely, and
the effects these have on the detected symmetries. Section 5 presents the results
of our experimental evaluation. Finally, Section 6 presents our conclusions.

2 Background

This section introduces the terminology to be used in the paper and provides a
summary of Puget’s method [13] to automatically detect symmetries.

2.1 CSP symmetry

A CSP is a triple (X,D,C) where X represents a set of variables, D a set of
domains, C a set of constraints, and where each variable xi ∈ X is associated
with a finite domain Di ∈ D of potential values. By an abuse of notation, if
∀Di, Dj ∈ D : Di = Dj , we will then make D equal to Di, i.e., we will present
the CSP in the form (X,Di, C).

A literal is of the form xi = di where xi ∈ X and di ∈ Di. For any literal l
of the form xi = di, we will use var(l) to denote its variable xi. An assignment
A is a set of literals. An assignment over a set of variables V ⊆ X has exactly
one literal xi = di for each variable xi ∈ V . An assignment over X is called a
complete assignment.

A constraint c is defined over a set of variables which is called its scope, and
is written vars(c). A constraint c specifies a set of allowed assignments over
vars(c). An assignment over vars(c) that is not allowed by c is disallowed by
c. An assignment A over V ⊆ X satisfies constraint c if vars(c) ⊆ V and the
projection of A over vars(c) (i.e., {lit ∈ A : var(lit) ∈ vars(c)}), is allowed by
c. A solution is a complete assignment which satisfies every constraint in C.
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A constraint c ∈ C can be represented extensionally by the set of allowed
assignments over vars(c), or intensionally by a function that, given an assign-
ment A, returns true if A satisfies c, and false otherwise. Since we only deal
with finite domains and global constraints whose arguments are known, any
intensional constraint can be converted into its extensional equivalent.

A solution symmetry f is a permutation of literals that preserves the set of
solutions [2]. In other words, it is a bijection from literals to literals that maps so-
lutions to solutions. Therefore, if {l1, . . . , ln} is a solution, then {f(l1), . . . f(ln)}
is also a solution, and if A1 and A2 are two distinct complete assignments, then
f(A1) and f(A2) are also distinct. Consequently, we can also say that for any
solution symmetry f , assignment A is a solution if and only if f(A) is. A con-
straint symmetry is a solution symmetry that preserves the constraints of the
CSP.

We now introduce some common, orthogonal classes of symmetries. A vari-
able symmetry is a permutation of the variables that preserves the constraints
or the solutions [12]. Since the inverse of any such permutation is also a sym-
metry, we will use 〈x1, x2, . . . , xn〉 ↔ 〈x1′ , x2′ , . . . , xn′〉, where {x1, . . . , xn} =
X = {x1′ , . . . , xn′}, to denote the variable symmetry which maps every xi to xi′

(or every xi′ to xi). For simplicity, if we have {x1, . . . , xk}, {x1′ , . . . , xk′} ⊂ X ,
then 〈x1, . . . , xk〉 ↔ 〈x1′ , . . . , xk′ 〉 denotes the symmetry which maps each xi to
xi′ leaving the remaining variables unchanged.

A value symmetry is a permutation within the sets inD (i.e., a bijection from
the values of a variable to values of that variable) that preserves the constraints
or the solutions [12]. We will use 〈di1, di2, . . . , din〉 ↔ 〈di1′ , di2′ , . . . , din′〉, where
{di1, di2, . . . , din} = Di = {di1′ , di2′ , . . . , din′}, to denote a value symmetry for
a given variable xi ∈ X . A variable-value symmetry is a permutation of the
literals (i.e. the set V ×D) that preserves the constraints or the solutions. Note
that a variable-value symmetry of a CSP is not necessarily a composition of a
variable symmetry and a value symmetry of that CSP (i.e., one or both might
not be symmetries of that CSP). These kind of symmetries will be referred to
as non-compositional variable-value symmetries.

Example 1. The common N-queens problem requires the placement of N
queens on an N × N chessboard such that no queen attacks another. We can
model this problem using one integer variable xi per row i in the board so that
each value, d ∈ {1, . . . , N}, represents the column position of xi in row i.

The corresponding CSP is ({x1, . . . , xN}, {1, . . . , N}, C), where ∀i, j s.t. i <
j we have {xi 6= xj , |xi − xj | 6= j − i} ⊆ C. This CSP has the variable sym-
metry 〈x1, . . . , xN 〉 ↔ 〈xN , . . . , x1〉 (representing the reflection around a hori-
zontal axis through the centre of the board), the value symmetry 〈1, . . . , N〉 ↔
〈N, . . . , 1〉 (vertical axis), and it also has the variable-value symmetry that maps
every xi = j to xj = i (top-left/bottom-right diagonal). Note that the last is a
non-compositional variable-value symmetry that does not result from composing
the previous two. ✷

Given a graph represented by the tuple 〈V,E〉, where V is a set of nodes, and
E a set of unweighted and undirected edges, an automorphism f of graph 〈V,E〉
is a permutation of the nodes such that ∀(ni, nj) ∈ E : (f(ni), f(nj)) ∈ E.
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2.2 Puget’s coloured graphs

The method presented by Puget in [13] has two steps. The first takes a CSP
and constructs a coloured graph, i.e., a graph represented by the triple 〈V,E, c〉
where V and E are as before, and c is a map from V to colours. The second
step finds the automorphisms of this graph that also preserve the colours, i.e.,
that only interchange nodes of the same colour. Formally, an automorphism
f of graph 〈V,E, c〉 is a permutation of the nodes such that ∀(ni, nj) ∈ E :
(f(ni), f(nj)) ∈ E and ∀n ∈ V, c(f(n)) = c(n).

Example 2. The graph shown in Figure 1(a) can be reflected across its vertical
axis resulting in that of Figure 1(b), where the dashed arrows indicate the node
permutation used for this reflection. Since the graph edges are preserved, the
permutation is an automorphism. Consider now the graph shown in Figure 1(c)
where colours are represented by shading patterns. Its reflection over the hor-
izontal axis results in Figure 1(d), where the dashed arrows again indicate the
associated node permutation. This permutation is also an automorphism. Note
that reflecting the graph across the vertical axis no longer results in an auto-
morphism due to the node colours. ✷
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Figure 1: Two graphs and one of their possible automorphisms.

In Puget’s method, the coloured graph associated with the CSP (X,D,C)
can be constructed as follows. First, a variable node is created for each variable
xi ∈ X , and a constraint node is created for each constraint c ∈ C. These nodes
are coloured as follows: all variable nodes have the same unique colour, and all
constraint nodes representing a particular “kind” of constraint have the same
(also unique) colour. Constraints can then be represented using two different
methods based on an intensional or an extensional representation, respectively.
For the intensional constraint representation, an edge is added between each
constraint node and the variable nodes in its scope. Dummy nodes might be re-
quired to break symmetries that do not occur in the constraint. Automorphisms
of this graph correspond to variable symmetries.

For the extensional constraint representation, a value node is introduced for
each value of each variable in the scope of the constraint, and an assignment
node is created for each allowed assignment of each constraint. Edges connect
each value node to its variable node, each assignment node to the value node
representing each variable-value literal occurring in the assignment, and each
assignment node to its constraint node. These nodes are coloured as follows:
all value nodes for a variable must have the same unique colour if we want
to detect value symmetries, while all value nodes (regardless of variable) must
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have the same unique colour if we also want to detect variable symmetries.
All assignment nodes have the same unique colour. As indicated by Puget,
if the set of allowed assignments contains many more elements than the set
of disallowed assignments, then the latter can be used to construct a smaller
graph. Automorphisms of this graph correspond to variable symmetries, value
symmetries and compositional variable-value symmetries.

Example 3. Consider the CSP ({x, y}, {1, 2, 3, 4}, {x ≥ y}). Figures 2(a)
and 2(b) show the graphs obtained by using the extensional constraint rep-
resentation with allowed and disallowed assignments, respectively. Both graphs
have 1 constraint node (coloured grey), 2 variable nodes of the same colour (here
represented using shape as square), 8 value nodes of the same colour (white),
and either 10 or 6 assignment nodes, respectively, of the same colour (here rep-
resented using size and colour as small and white). Figure 2(c) shows the graph
obtained for the same CSP using the intensional constraint representation. This
graph needs 1 constraint node and 2 variable nodes as before, plus a dummy
node (represented as a grey square) to break the symmetry. ✷
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Figure 2: Allowed extensional, disallowed extensional, and intensional graphs.

Example 4. Consider the CSP ({x, y, z}, {1, 2, 3}, {x = y, y = z}). Figure
Figure 3(a) shows the graph obtained by using the extensional constraint rep-
resentation with allowed assignments. The graph has three value nodes per
variable.1 It also has three assignment nodes corresponding to each allowed
assignment {x = 1, y = 1}, {x = 2, y = 2}, {x = 3, y = 3} of x = y, and another
three for those of y = z. All assignment nodes have the same colour (small
and white). Finally, the graph has two constraint nodes, each connected to
its associated assignment nodes and mapped to the same colour (grey), since
they represent constraints of the same kind (equality). The graph associated
with CSP ({x, y, z}, {1, 2, 3}, {x < y, y < z}) using the extensional constraint
representation with allowed assignments is shown in Figure 3(b). ✷

While the method described above is correct (any automorphism of the graph
corresponds to a symmetry of the CSP), it is not complete (some CSP symme-
tries might not appear in the graph). This was demonstrated by Puget [13]
using the graph of Figure 3(a) which represents constraints {x = y, y = z}.
The graph does not contain any variable symmetries involving y, even though
both 〈x, y〉 ↔ 〈y, x〉 and 〈y, z〉 ↔ 〈z, y〉 are symmetries of the CSP. To reduce
this problem, Puget suggests to take the transitive closure of equality and ≤

1Note that, for simplicity, only the leftmost value nodes are labelled, their associated value
being shared by all value nodes at the same horizontal level.
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constraints, and also to replace constraints such as x ≤ y and y ≤ x by x = y.
Applying this to the graph of Figure 3(a) leads to the addition of x = z, and re-
sults in the graph of Figure 3(c), which does contain symmetries 〈x, y〉 ↔ 〈y, x〉
and 〈y, z〉 ↔ 〈z, y〉. Note, however, that the transitive closure does not make
the method complete.
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(b) {x < y, y < z}
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(c) {x = y, y = z, x = z}

Figure 3: Graphs for CSPs=({x, y, z},{1, 2, 3},C) where C is:

2.3 Puget’s representation using Boolean variables

As mentioned before, there are symmetries of the CSP that cannot be expressed
as the composition of variable and value symmetries present in the CSP. This
is the case, for instance, for the rotational symmetries of the n-queens problem.
These non-compositional symmetries cannot be expressed using the intensional
representation of constraints proposed by Puget since, as he indicates, it is only
suitable for variable symmetries. Neither can they be represented using the
intensional representation, due to the existence of variable nodes and to the
different colour used for different kinds of constraints.

Puget addresses this issue by proposing a new representation of CSPs, one
that uses boolean variables instead of finite domain variables. There is a stan-
dard mapping of finite domain CSPs to the boolean representation by introduc-
ing a boolean variable for each literal in the original CSP. An allowed assignment
of a constraint in the original CSP corresponds to an assignment of true to all
the boolean variables representing literals in the assignment. A solution to the
original CSP corresponds to an instantiation of the boolean variables such that:

• precisely one boolean variable for each original variable is set to true
• each original constraint has (at least one) allowed assignment

Puget proposes a graphical representation of the original CSP based on this
boolean model (actually, using zero-one rather than boolean variables). He
employs an intensional representation of the boolean model, together with a
node for each original constraint, linked to the boolean constraint representing
each allowed assignment of the original constraint (illustrated in Figure 6 of
Puget [13]). As a result, there are no longer variable nodes and, thus, some
non-compositional variable-value symmetries can be represented.

However, automorphisms of this graph representation do not necessarily
correspond to solution symmetries of the original CSP. A counter example
can be illustrated with the CSP ({x, y, z}, {1, 2, 3}, {x < y}), (later shown us-
ing a different graphical representation in Figure 13), under the permutation
〈x = 3〉 ↔ 〈z = c〉, for any c ∈ {1, 2, 3}, that is not a symmetry of the CSP. In
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Lemma 2 below, we impose some restrictions on the boolean representation to
guarantee that graph automorphisms do indeed correspond to symmetries.

Moreover, the link to the original constraint node precludes symmetries in-
volving different constraints (such as an all different and a disequation). Inter-
estingly, Puget’s boolean model for the all different constraint does not appear
to include a link back to the original constraint node. For clarity, we briefly
summarise four alternative representations for this constraint under Puget’s ap-
proach.

The first representation is an intensional representation of the original con-
straint. This comprises a node for the constraint, a node for each variable in
its scope, and an edge between the constraint node and each variable node
(Figure 4(a)). The second representation is the extensional representation of
the original constraint with O(mn) nodes representing allowed assignments of
n variables each with a domain size of m (Figure 4(b)). A third representation
is the standard boolean one with an assignment node for each allowed assign-
ment. This is almost the same as the extensional representation, but without
any nodes corresponding to the original variables (Figure 4(c)). The fourth rep-
resentation is another boolean one, but this time without any nodes representing
the original constraints. The all different constraint over n variables vi can be
represented by m constraints (one per value, cj), each of which is connected
to the n boolean variables bij : i ∈ 1..n, representing vi = cj . Each boolean
constraint states that only one of the connected booleans is true (Figure 4(d)).
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x y z
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1

2

3

x y z

(d)

Figure 4: CSP=({x, y, z},{1, 2, 3}, {all different({x, y, z})})

The reason why constraint nodes are needed in the third representation
and not in the fourth representation of the all different constraint is as follows:
while the (many) assignments corresponding to an original constraint in the
third representation form a logical disjunction of the boolean constraints, in the
fourth representation they form a logical conjunction. The constraint node in
the third representation removes any incorrect symmetries between a disjunction
of assignments and a conjunction of constraints. We explore the consequences
of this issue further in the next section.

The resulting graph (Figure 4(b) shows an example for n = 3) is much
smaller (O(m.n) nodes) than a graph that uses the extensional form of the
original all different constraint which requires (O(mn) nodes).

To complement this representation, Puget also proposes a similar all different
constraint between the different values of a variable, connecting the boolean
nodes bij : j ∈ 1..m. This is necessary to ensure graph automorphisms corre-
spond to solution symmetries. Indeed, these constraints are not only necessary,
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but also sufficient, as shown in the next section. However, if this is expressed via
an all different constraint, then opportunities for detecting symmetries may be
lost since this representation does not allow a disequation between two values to
participate in a symmetry with a disequation between two variables (a similar
situation is shown in Example 12).

Note that, as shown in Section 4.1, an extensional representation over boolean
variables can also stay within the same O(m.n) number of nodes. However, both
the O(m.n) boolean representations of all different may lose symmetries due to
the interaction between this (very special kind of) representation and that of
other constraints in the CSP.

2.4 Puget’s representation for expressions

Puget’s method is based on constraints whose arguments are distinct variables.
In order to be able to handle constraints involving expressions, Puget proposes
to represent any expression of the form xi op xj , where xi, xj ∈ X are distinct
variables, as the extensional constraint associated with op(xi, xj , t), where t is a
new (temporary) variable which is then used to replace the expression xi op xj as
the constraint’s argument (see Figure 5). We believe this method was suggested
because (a) it reuses the already defined constraint representation, and (b) uses
the same colour for constraints with and without complex expressions. For
example, A < B can be represented by the same colour as C < D + 1 if the
latter constraint is expressed as a combination of E = D + 1 and C < E.
This reduces the syntax dependency of the graph and thus might result in more
symmetries being detected.

Since this approach can lead to very large graphs, Puget also proposed an
alternative approach for handling expressions of the form op(x), where the vari-
able x is only allowed to occur once in the expression. The idea then is to use
the literal x = d to represent t = op(d) wherever it would have occurred (see
Figure 6). Although this representation results in compact graphs, it is only
suitable for some constraints.

Expressions with more than one variable are, therefore, broken into sub-
expressions, each of which is represented by a new (temporary) variable ti.
Constraints involving expressions as arguments are simply treated by replacing
each such argument by a new variable representing the expression. As noted by
Puget and others [13, 15], this can lead to the unintentional loss of symmetries
due, for example, to the associative nature of operators.
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Figure 5: Graph of CSP ({x, y, z}, {{1, 2}, {1, 2}, {1, 2, 3}}, {x+ y > z}). The
extra variable t represents x+ y, with domain Dt = {2, 3, 4}.
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Figure 6: Graph of CSP ({x, y}, {1, 2, 3}, {x+ 1 > y}). Node x = 1 represents
2 = +1(1), and x = 2 represents 3 = +1(2).

Example 5. Consider the constraint x+ y+ z > w. If the constraint is parsed
as (x + y) + z > w, it would be transformed into constraint t1 > w, where the
new variable t1 has associated constraint +(t2, z, t1) (representing the constraint
t2+ z = t1), and new variable t2 has associated constraint +(x, y, t2). Although
in the expression all three variables are interchangeable, the associated graph
only has the variable symmetry 〈x, y〉 ↔ 〈y, x〉. ✷

The problem can be ameliorated [13, 15] by representing multiple occurrences
of a binary associative operator with a single n-ary operator. For instance,
in the previous example we would only introduce one extra variable t3, and
the constraint +(x, y, z, t3). As recommended in [13], non-symmetric binary
arithmetic operations, such as x− y and x/y, are decomposed using their unary
inverse operators, resulting in x + (−y) and x ∗ (1/y). This allows further
grouping of associative operators while at the same time preventing the creation
of false symmetries. Unfortunately, as mentioned before, this preprocessing only
reduces the problem instead of eliminating it, since the intermediate variables
can still prevent some symmetries from being captured by the graph, even after
performing all the preprocessing steps indicated above.

Example 6. Consider the CSP ({x, y, z}, {{1, 2}, {1, 2}, {1}}, {x+z 6= y, y+z 6=
x}). This CSP has a variable symmetry 〈x, y〉 ↔ 〈y, x〉, and a value symmetry
〈1, 2〉 ↔ 〈2, 1〉, for both x and y. The expressions in the two constraints are
represented by t1 = x + z and t2 = y + z. The associated extensional graph
is shown in Figure 7, with grey and black constraint nodes linking assignment
nodes for equality and disequality constraints, respectively. It can be seen that
the graph captures the variable symmetry (achieved by reflecting the graph in
a vertical axis positioned over value node 1 of z), but not the value symmetry
(which would be achieved by reflecting the graph in a horizontal axis positioned
in between value nodes 1 and 2 of x and y). ✷

x y

z

1

2
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1

t1 t2

2

3

2

3

Figure 7: Graph of CSP ({x, y, z}, {{1, 2}, {1, 2}, {1}}, {x+ z 6= y, y + z 6= x})

The above discussion highlights the considerable influence that the constraint
syntax bears on the resulting graph. Since the same constraint can usually be
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expressed in several equivalent ways, it would seem advantageous to determine
which normal form would yield a graph that captures the greatest number of
symmetries. It was while trying to determine such a normal form that we
decided to abandon the above method, since it not only generated too many
intermediate variables (as already indicated by Puget), but it could also easily
result in symmetries being missed due to the use of a particular syntax.

2.5 Representing Sets

Sets are used in modelling many problems – arguably most problems coming
from the real-world. Consider a set variable xi ∈ X known to be a subset of set
S. Its domain Di is equal to the power-set of S, i.e., Di = {S′|S′ ⊆ S}. In any
graph representation which includes value, or literal, nodes, a node is therefore
required for every element of the power set, and this leads to large graphs.
Using the extensional method (c.f Figure 4(b)) the graph has one variable node
and 2|S| value nodes (e.g., if S = {1, 2, 3, 4} the graph contains 1 variable node
for xi and 16 value nodes representing values {}, {1}, {2}, . . . , {2, 3, 4}, and
{1, 2, 3, 4}). Set constraints are then extensionally represented as usual by using
their allowed or disallowed assignments.

An alternative approach is to use a boolean representation, (c.f. Figure 4(c)).
Then, rather than using each element in the powerset of S to create a value node,
we would use each element in the set, i.e., we would obtain |S|+1 nodes where
one node represents the empty set, and ∀d ∈ S there is a node representing
di ∈ xi (e.g., if S = {1, 2, 3, 4} the graph contains 5 nodes representing xi = {},
1 ∈ xi, 2 ∈ xi, 3 ∈ xi, and 4 ∈ xi). A constraint on the set is represented by
its allowed assignments. A set is represented, in an assignment, by its elements.
Thus the assignment includes all the elements which belong to the allowed set,
(or the empty set if there are none). The constraint is, as usual, the disjunction
of the represented assignments. In the graph, a constraint is represented by a
constraint node and a node for each of its allowed assignments. The assignment
node is then linked to each of the nodes representing an element in the allowed
set, or the node representing the empty set, if there are none. This boolean
representation results in fewer nodes but more edges.

The significance of these alternative representations for our implementation
is shown in section 5.1 below.

Example 7. Figure 8(a) and 8(b) show the two alternative graphs obtained for
CSP ({s1, s2, s3}, D, {|(s1∩s2)∪s3| = 2}) whereDs1 = Ds2 = {{}, {1}, {2}, {1, 2}},
and Ds3 = {{}, {1}}. ✷

3 A new graph representation

3.1 Allowed and disallowed assignments

Instead of using intensional constraints or factoring out expressions with tem-
porary variables, we believe it is cleaner and simpler to return to extensional
constraints. An important motivation for us is to eliminate different “kinds” of
constraints, which have different colours and stick to just two kinds: constraints
represented extensionally by allowed and by disallowed assignments. When seen
in this light, it becomes clear that we can avoid the representation of temporary
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s1 s2

s3

{}

{1}

{2}

{1, 2}

{}

{1}

{2}

{1, 2}

{1}

{}

(a) Extensional

s1 = ∅

1 ∈ s1

2 ∈ s1

s2 = ∅

1 ∈ s2

2 ∈ s2

s3 = ∅

1 ∈ s3

(b) Boolean

Figure 8: Different representations for set constraint |(s1 ∩ s2) ∪ s3| = 2

variables and constants by absorbing expressions into the constraint in which
they appear. We also decided to drop variable nodes and, instead, use literal
nodes rather than value nodes. The consequences of this will be discussed in
section 3.3 below.

Example 8. Consider the CSP ({x, y, z}, D, {x+ y > z}, ) where Dx = Dy =
{1, 2} and Dz = {1, 2, 3}. The ternary constraint x + y > z can simply be
represented extensionally by its set of allowed assignments, {{x = 1, y = 1, z =
1}, {x = 1, y = 2, z = 1}, {x = 1, y = 2, z = 2}, {x = 2, y = 1, z = 1}, {x =
2, y = 1, z = 2}, {x = 2, y = 2, z = 1}, {x = 2, y = 2, z = 2}, {x = 2, y = 2, z =
3}}, all linked to an additional constraint node, as illustrated by Figure 9. ✷

x = 1

x = 2

y = 1

y = 2

z = 1

z = 2

x = 3

Figure 9: Representing expressions as allowed assignments

We would like to simplify the graph further by eliminating the constraint
nodes. This, however, cannot be achieved if the CSP contains at least two
constraints c1, c2 ∈ C such that c1 6= c2 and vars(c1) = vars(c2). This is
because while each constraint must be interpreted as the union of its allowed
assignments, their conjunction must be interpreted as the intersection of the set
of assignments allowed by each. Without constraint nodes, the graph cannot
distinguish between the set of assignment nodes representing c1 ∧ c2 and that
representing c1 ∨ c2. By contrast, representing c1 ∧ c2 by their disallowed as-
signments is correct and unambiguous even without constraint nodes. This is
because the set of disallowed assignments {A11, . . . , A1s} and {A21, . . . , A2t} for
c1 and c2, respectively, is interpreted as the conjunction of all their disallowed
assignments, i.e., ¬A11 ∧ . . .¬A1s ∧ ¬A21 ∧ . . .¬A2t.

Example 9. Figures 10(a) and 10(b) show the graphs obtained by representing
the disallowed assignments of the constraints in CSPs (X,D,C) and (X,D,C′),
respectively, where X = {x, y}, Dx = Dy = {1, 2}, C = {x > y, x < y}, and
C′ = {x 6= y}. It is clear that, without the constraint nodes, the graphical
representation of these two CSPs are indistinguishable, even though while the
first CSP has no solutions, the second has two. The confusion is due to x 6= y
being logically equivalent to (x > y ∨ x < y). Figures 10(c) and 10(c) show the
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graphs obtained by representing the disallowed assignments of the constraints
(note that, for clarity, identical assignments disallowed by different constrains
have been merged). As it is clear from the figure, the graphs are perfectly
distinguishable even though constraint nodes are not represented. ✷

x = 1

x = 2

x = 3

y = 1

y = 2

y = 3

(a) x 6= y

x = 1

x = 2

x = 3

y = 1

y = 2

y = 3

(b) x > y, x < y

x = 1

x = 2

x = 3

y = 1

y = 2

y = 3

(c) x 6= y

x = 1

x = 2

x = 3

y = 1

y = 2

y = 3

(d) x > y, x < y

Figure 10: Graphs using allowed (a,b) and disallowed (c,d) assignments.

The simplicity of this method is pleasing since it eliminates problems such
as the explicit representation of constants (which is now avoided regardless of
whether the constant appears as a constraint argument or not), the normal-
isation required when multiple occurrences of a variable appeared in a con-
straint (such as A×A=1, which can now be easily treated by computing the
values of A for which the constraint is satisfied), the problem of associative and
non-symmetric operands appearing in the same constraint, and in general, any
such normalisation issue affecting a single constraint. For instance, Figure 11
shows the graph obtained for the CSP of Example 6 using the new representa-
tion method.2 The elimination of temporary variables yields a graph that has
not only the variable symmetry 〈x, y〉 ↔ 〈y, x〉, but also the value symmetry
〈1, 2〉 ↔ 〈2, 1〉 for both x and y.

The method also avoids syntactical issues regarding constraints whose name
appears to be different but is actually equivalent (e.g., x < y and z > w should
be considered as constraints of the same kind). However, some problems remain
when a CSP has two constraints with identical scopes (see section 3.3).

3.2 Disallowed assignments and the microstructure com-

plement

Given the above discussion, it would seem advantageous to represent a CSP
using only its disallowed assignments. Let us consider the advantages and dis-
advantages of such an approach.

Definition 1. A CSP (X,D,C) is represented by the disallowed assignments
graph if the graph contains two kinds of nodes:

2Note that, for simplicity, only the leftmost (topmost) literal nodes are labelled with the
associated value (variable), which is shared by all literal nodes at the same horizontal (vertical)
level.
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1

2

x yz

Figure 11: Graph for CSP ({x, y, z}, {{1, 2}, {1, 2}, {1}}, {x+z 6= y, y+z 6= x})

• Literal nodes, each representing the assignment of a specific value to a
specific variable

• Assignment nodes, each representing either a disallowed assignment from
any constraint in C, or a (disallowed) pair of distinct literals {x = a, x =
b} for all x ∈ X and all a, b ∈ Dx such that a 6= b

All literal nodes have one colour and all assignment nodes have another. The
graph contains an edge from each assignment node to each of the literals involved.

Example 10. Figure 12 illustrates the disallowed assignments graph for the
3- and 4-queens problems (with disallowed disequality assignments shown as
small black nodes). Note the need to represent the disallowed pairs of distinct
literals for each variable, to capture all the symmetries of the chessboard. While
they are also captured by Puget’s boolean representation, the variable nodes do
not allow Puget’s extensional representation to capture the non-compositional
variable-value symmetries that indicate a rotation of the chessboard. ✷

Q1 Q2 Q3

1

2

3

(a) 3− queens

Q1 Q2 Q3 Q4

1

2

3

4

(b) 4− queens

Figure 12: Graph for instances of N-queens using disallowed tuples.

The disallowed assignments graph is similar to the microstructure comple-
ment introduced by Jégou [9] and extended by Cohen et al. [2]. Given a CSP
(X,D,C), its microstructure is a hypergraph with a node for each literal xi = di
such that xi ∈ X, di ∈ Di, and a hyperedge for every assignment allowed either
by a specific constraint, or by the lack of a constraint between the variables
involved. The microstructure complement is the complement of this graph; i.e.,
the hyperedges represent assignments that are not allowed either by a constraint
or by the fact that the literals belong to the same variable.

The only difference between the disallowed assignments graph and the mi-
crostructure complement is that each disallowed assignment is represented by
an assignment node and the literals linked to it, whilst the microstructure com-

14



plement represents a disallowed assignment by a single hyperedge linking the
literals.

The main drawback of both the microstructure complement and the dis-
allowed assignments graph is their size. Firstly, they have, in general, more
nodes than necessary. Every value for every variable is represented as a node,
although many of these nodes could never appear in a solution (techniques for
pruning nodes will be discussed below). And secondly, the number of hyper-
edges (or assignment nodes) in the graph is high. A mathematical equation,
such as x = 2y + z requires approximately d3 hyperedges, where d is the size
of the domains of x, y and z. While for some constraints the set of disallowed
assignments is the most compact way to represent the constraint, many oth-
ers, such as mathematical equations, are much more compactly represented by
their allowed assignments. Moreover, the microstructure complement requires
d2 edges to disallow multiple assignments for a variable in the CSP with do-
main size d. Thus for n variables, nd2 edges are needed. While this number
could be kept to nd using intensional constraints, as described before, this would
limit the symmetry possibilities, making non-compositional variable-value sym-
metries unlikely. Therefore, in the next section we consider an alternative graph
in which only allowed assignments are represented explicitly.

3.3 Allowed assignments and the microstructure

The definition of the microstructure provided in the previous section suffers
from a flaw caused by the same reason that prevented us in Section 3.1 from
eliminating constraint nodes for allowed assignments: if two or more constraints
have the same scope, then the set of hyperedges over that scope represents the
disjunction, instead of the conjunction, of the constraints. This flaw can be eas-
ily fixed, however, by a preprocessing step which replaces each set of constraints
that have the same scope by a new constraint whose allowed assignments are
those that satisfy all constraints. From now on, we will assume that every CSP
(X,D,C) has already been preprocessed and, therefore, it is true that for every
two distinct constraints c1, c2 ∈ C : vars(c1) 6= vars(c2).

Unfortunately, there is another serious drawback to using the microstructure:
the inclusion of a hyperedge for each assignment “allowed because there is no
constraint between the associated variables”. Assuming there are n variables in
the CSP (X,D,C), there will be 2n subsets of X , with each subset Xi being
either equal to vars(c) for some c ∈ C, or unconstrained. An unconstrained
set of variables {xi, · · · , xj} has |Dxi

| × . . .× |Dxj
| allowed assignments. Since

the number of constraints is typically much smaller than 2n, the number of
hyperedges in the microstructure is typically very large indeed.

We seek a graphical representation of the CSP that has a small number of
edges, but for which graph automorphisms correspond to solution symmetries.
Luckily, it turns out not to be necessary to add allowed assignments for every
set of variables that do not form the scope of a constraint in the CSP. It is
sufficient to add allowed assignments for each pair of distinct variables which
do not both belong to the scope of a constraint.

If (X,D,C) is a CSP, its binary constraint completion, BC, is the set of
binary constraints whose scopes are the pairs of distinct variables xi, xj ∈ X for
which there is no constraint c ∈ C with {xi, xj} ⊆ vars(c) - i.e., the constraints
in BC are logically equivalent to true.

15



Definition 2. A CSP (X,D,C) is represented by the allowed assignments graph
if the graph contains two kinds of nodes:

• Literal nodes, each representing the assignment of a specific value to a
specific variable

• Assignment nodes, each representing an allowed assignment from a con-
straint in C ∪BC.

All literal nodes have one colour and all assignment nodes have another. The
graph contains an edge from each assignment node to each of the literals involved.

Lemma 1. Every automorphism f of an allowed assignments graph for CSP
(X,D,C) represents a solution symmetry.

Proof. Let S be a solution to the CSP. We will prove that f(S) is also a solution
by first showing it is a complete assignment, and then showing it satisfies each
constraint in C.

Let lit1 and lit2 be two distinct literals in S. Then, {var(lit1), var(lit2)} ⊆
vars(c) for some c ∈ C ∪BC. Since S is a solution, it satisfies c and, therefore,
{lit1, lit2} ⊆ A for some assignment A allowed by c. As a result, they must
both be linked to at least one allowed assignment node n. By the definition
of automorphism, {f(lit1), f(lit2)} are linked to f(n), which means they also
belong to an assignment allowed by some constraint c′ ∈ C ∪ BC. By the
definition of an allowed assignment, var(lit1) 6= var(lit2) and var(f(lit1)) 6=
var(f(lit2)). Since this holds for every pair of literals in S and f(S), we have
that card(f(S)) = card(S) = card(X), and we have shown that f(S) is a
complete assignment.

Let us now show that every constraint in C is satisfied by f(S). If there
are m constraints in C, then there are m subsets of S which correspond to
allowed assignments. Let c1, c2 ∈ C be two different constraints and A1, A2 ⊆
S be assignments allowed by c1 and c2, respectively. By assumption of the
preprocessing step, vars(c1) 6= vars(c2). Also, by definition of automorphism,
the image f(A) of any allowed assignment A is also an allowed assignment
and, therefore, for every two distinct literals lit1, lit2 ∈ A we have var(lit1) 6=
var(lit2) and var(f(lit1)) 6= var(f(lit2)). Therefore, if v ∈ vars(c1) \ vars(c2),
and v = var(lit) with lit ∈ A1, then var(f(lit)) is not in the set of variables
over which f(A2) is an assignment. It follows that f(A1) and f(A2) are allowed
assignments over distinct sets of variables and, therefore, they belong to two
different constraints. This means that f(S) also satisfies m distinct constraints
and, therefore, all constraints in C. Since f(S) is a complete assignment, it
must also be a solution.

Figure 13 shows a CSP where, if the BC is excluded, the graph has auto-
morphisms that are not solution symmetries.

1

2

3

x y z

Figure 13: CSP ({x, y, z}, {1, 2, 3}, {x < y}). The graph has the automorphism
〈x = 3〉 ↔ 〈z = 3〉, which is not a solution symmetry.
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3.4 A graph including allowed and disallowed assignments

We now present a new graph representation for CSPs that does not require all
constraints to use the allowed (or disallowed) assignments and, thus, permits dif-
ferent constraints to use different assignments. The representation takes many
ideas from the work of Puget [13] but is also closely related to the microstruc-
ture and microstructure complement of Cohen et al. [2]. As before, our graph
representation of a CSP (X,D,C) has a node for every literal (and, thus, for
every value of the domain of every variable in X). However, we now admit both
allowed assignments and disallowed ones, distinguished by different colours.

We call an allowed constraint one that is represented by all its allowed as-
signments, and a disallowed constraint one represented by all its disallowed
assignments.

Definition 3. A CSP (X,D,C) is represented by the full assignments graph if
the graph contains three kinds of nodes:

• Literal nodes, each representing the assignment of a specific value to a
specific variable

• Allowed assignment nodes, representing an allowed assignment from a
constraint in C

• Disallowed assignment nodes, either representing a disallowed assignment
from a constraint in C, or a (disallowed) pair of distinct literals {x =
a, x = b} for all x ∈ X and all a, b ∈ Dx such that a 6= b.

All literal nodes have one colour, all allowed assignment nodes have another,
and all disallowed assignment nodes have a third. The graph contains an edge
from each assignment node to each of the literals involved.

Two conditions are imposed to ensure that graph automorphisms correspond
to solution symmetries.

1. Each constraint must be either allowed or disallowed
2. Either:

• every pair of variables is in the scope of an allowed constraint (i.e.,
∀x, y ∈ X, x 6= y : ∃c ∈ C, x, y ∈ vars(c)), or

• every pair of literals within a variable is linked by disallowed assign-
ments, for all variables (i.e., ∀x ∈ X, ∀a, b ∈ Dx, a 6= b : ∃ an
assignment node linking literal nodes x = a and x = b)

Lemma 2. Every automorphism f of the full assignments graph for CSP
(X,D,C) represents a solution symmetry.

Proof. Let S be a solution to the CSP. We will prove that f(S) is also a solution
by first showing it is a complete assignment, and then showing it satisfies each
constraint in C.

If every pair of variables is in the scope of an allowed constraint, then this is
proved in Lemma 1 above. Otherwise, for each variable, all its pairs of literals
are linked by disallowed assignments. Let us reason by contradiction and assume
that f(S) is not a complete assignment. Then, there must be two literals, say
f(lit1) and f(lit2), for the same variable. Therefore, {f(lit1), f(lit2)} must
be linked to one binary disallowed assignment node and, by the definition of
automorphism, {lit1, lit2} must also be linked to a binary disallowed assignment

17



node. But this is impossible since they belong to a solution. We conclude that
f(S) must be a complete assignment.

Let us now show that every constraint in C is satisfied by f(S). If there
are m constraints in C, represented by allowed assignments, then it follows, as
in the proof of Lemma 1 above, that f(S) also includes allowed assignments
from m different constraints, and therefore f(S) satisfies all the constraints in
C represented by allowed assignments. Otherwise, if f(S) includes a set of
literals linked to a disallowed assignment, then so must S have, which would
contradict S being a solution. We conclude that f(S) is a complete assignment
that satisfies all the constraints and, therefore, it is a solution.

Lemma 3. Not every solution symmetry for a CSP (X,D,C) is an automor-
phism f of its full assignments graph.

Proof. It is easy to prove the lemma by contradiction. Consider the CSP
({x, y, z}, {1, 2, 3}, {x < y, y < z}) whose only solution is {x = 1, y = 2, z = 3}.
While this CSP has the solution symmetry 〈x = 2, x = 3〉 ↔ 〈x = 3, x = 2〉, this
is not a constraint symmetry since it maps the allowed assignment {x = 2, y = 3}
of constraint x < y to the disallowed assignment {x = 3, y = 3}. It is clear from
its full assignment graph (Figure 14) that the solution symmetry is not an au-
tomorphism of the graph either.

1

2

3

x y z

Figure 14: Full assignments graph of CSP ({x, y, z}, {1, 2, 3}, {x < y, y < z})

While supporting both allowed and disallowed assignments makes it possible
to reduce the size of the graph, it might lead to a loss of constraint symmetries.
This can occur even if we consistently represent constraints using the method
that ensures the minimum number of assignments.

Example 11. Consider the CSP ({x, y, z}, {1, 2, 3}, C), where C = {c1(z, y),
c2(x, y), x = z}, c1 = {1, 2} × {1, 2, 3} and c2 = {1} × {1, 2, 3}. This CSP
contains a solution symmetry, 〈x = 1〉 ↔ 〈z = 1〉. As illustrated by Figure 15,
if this CSP is represented using only disallowed assignments or only allowed
assignments, the symmetry is present in the graph. However, if we use the
representation with the smallest graph (disallowed assignments for c1(z, y) and
allowed assignments for c2(x, y) and x = z), then that symmetry is not present
in the graph. ✷

Lemma 4. All results proven for a full assignments graph hold for the allowed
and disallowed assignments graphs.

Proof. Immediate since, by definition, any allowed (disallowed) assignments
graph is an instance of a full assignments graph in which only allowed (dis-
allowed) assignments are used for representing constraints.
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(a) Allowed graph

1
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3

x y z

(b) Disallowed graph

1

2

3

x y z

(c) Full graph

Figure 15: Symmetry 〈x = 1〉 ↔ 〈z = 1〉 is not present in (c) (see Example 11).

4 Reducing graph size

While the full assignment graph might result in smaller graphs than those ob-
tained using only allowed or only disallowed assignments, even the full assign-
ments graphs tend to be rather large (see Table 1 for size data). For example,
the number of nodes in the full assignment graph of a CSP is the sum of:

• the number of literals, which is the product of the variable domain sizes
• the number of allowed assignments for constraints and its binary constraint
completion, if these are explicitly represented

• the number of disallowed assignments for constraints, and for pairs of
literals from the same variable, if these are explicitly represented

The following subsections describe some general methods that help reduce
the size of the graph.

4.1 Minimising the number of assignment nodes

In the worst case, a constraint over k variables may need to be represented in the
full assignment graph by O(dk) allowed or disallowed assignment nodes, where d
is the size of the smallest domain. A way to minimise the number of assignment
nodes is to keep k as small as possible. Consider for example an all different
constraint on k variables, where d is larger than k. Using allowed assignments
the graph representation requires d× (d−1)× . . .× (d−k−1) assignment nodes
or O(dk). Using disallowed constraints the number is O(d(k−1)). However,
when split into k × (k − 1) binary constraints, the total number of disallowed
assignments is d per binary constraint, making a total of O(k2 × d).

Breaking down each constraint into a logically equivalent conjunction of
constraints with as small scope as possible, has a very useful side-effect: it will
tend to increase the number of constraints with the same scope, which can
be integrated (during the preprocessing step) into a single constraint, thereby
increasing the number of detected symmetries.

Example 12. Consider the CSP ({x1, x2, x3, x4}, {1, . . . , N}, {all different(X),
x2 6= x4}), where all different is represented using N disallowed assignments
nodes. Then, the representation of x2 6= x4 will limit the symmetries of the
graph to those generated by 〈x1, x3〉 ↔ 〈x3, x1〉 and 〈x2, x4〉 ↔ 〈x4, x2〉. Thus,
symmetries such as 〈x1, x2〉 ↔ 〈x2, x1〉 will be lost since they do not correspond

19



to automorphisms of the associated graph. However, if all different is repre-
sented by the disallowed assignments of the equivalent constraint {xi 6= xj |1 ≤
i < j ≤ 4}, all variable symmetries are present in the graph. Figure 16 shows
the graphs associated with the two representation of the CSP for N = 1.

x1 x2 x3 x4

1

(a)

x1 x2 x3 x4

1

(b)

Figure 16: Representing all different using n-ary and binary constraints.

Note that we can also represent the all different constraint extensionally
using only O(d.k) nodes. Suppose we order the k variables in the constraint,
v1, . . . , vk. We will use boolean variables bjc to represent vj = c. We now
introduce, for each value c, k new boolean variables tjc : j ∈ 1..k. tjc is true (1)
if any of b1c, . . . , bjc are true. t1c = b1c and for each j ∈ 2..k there is a constraint
with scope tj−1,c, bj,c, tj,c defined by three allowed assignments: < 1, 0, 1 >,<
0, 1, 1 >,< 0, 0, 0 >. There are just k such constraints for each value c, and each
constraint has just three assignments, so the total number of edges required is
3.d.k which is O(d.k). While this representation is also very compact, it has the
same problem as the boolean representation proposed by Puget: it might lead
to a loss of symmetry detection if it has to interact with that obtained for other
kinds of constraints. We have therefore not used it in our implementation. ✷

If all constraints represented in the graph have less than k variables in their
scope, then the number of edges is less than nk where n is the number of
nodes. Moreover, as pointed out in by Cohen et al. [2], by adding enough
disallowed assignments over k variables it is possible to create a (microstructure
complement) graph whose automorphisms represent all solution symmetries of
the CSP. Their proof is easily adapted to show the same holds true of the full
assignment graph.

This result gives an upper bound on the size of the graph needed to cap-
ture all the solution symmetries of a given CSP. It follows that representing
constraints by an equivalent conjunction of constraints of minimum possible
arity, we achieve a lower bound on this worst case. Naturally, it remains an
NP-hard problem to elicit all the disallowed assignments, but we at least have a
theoretical upper bound on the size of the smallest graph that captures all the
symmetries of the problem.

4.2 Minimising the number of literal nodes

CSPs can be simplified by using standard propagation techniques which reduce
the domains of the variables and, thus, the number of literal nodes which appear
in the full assignment graph. Correct simplifications to achieve node- and arc-
consistency are well-known, and yield a new CSP that has the same set of
solutions as the original one. Indeed, consistency algorithms were first devised
for improving the efficiency of picture recognition programs, to reduce the size
of the graph, which is exactly what we are seeking to do!

Perhaps surprisingly, these methods can also yield a loss of detected sym-
metries, i.e., they can exclude graph automorphisms which were present in the
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graph G of the original CSP but are eliminated from the graph G′ of the simpli-
fied CSP. In particular, graph G may have an automorphism that maps a literal
lit onto another literal f(lit), while G′ has node lit but not f(lit).

Example 13. Consider the CSP ({x, y, z}, {1, 2, 3}, {x ≥ y, x 6= y, z > y}).
While arc-consistency will eliminate value 1 from Dz and 3 from Dy (due to
constraint z > y), the domain of x will remain unchanged after achieving arc-
consistency (since all its values are supported), obtaining the arc-consistent CSP
({x, y, z}, {{1, 2, 3}, {1, 2}, {2, 3}}, {x ≥ y, x 6= y, z > y}). If we now choose to
represent each constraint of the original CSP by its disallowed assignments, the
graph has an automorphism corresponding to the variable symmetry 〈x, z〉 ↔
〈z, x〉. However, the graph associated with the arc-consistent CSP no longer has
this (or any) variable symmetry. ✷

We have already motivated the need to merge all constraints with the same
scope before generating the graph associated with a CSP. Such a merging for
the previous example would have ensured that value 1 was also removed from
Dx, thus preserving the variable symmetry between x and z. If we assume this
preprocessing step has been carried out, we can show that any algorithm which
achieves arc-consistency preserves all the variable and value symmetries that
were present in the original CSP.

We now consider n-ary arc-consistency. A CSP is n-ary arc-consistent if
every value di of every variable xi is supported in every constraint c with xi in
its scope, because there is a tuple of values, each from the domain of its variable,
which is allowed by c and assigns di to xi.

Lemma 5. Let f be an automorphism of the full assignment graph for a CSP
(X,D,C) whose constraints all have distinct scopes. If f represents a variable
or a value symmetry, then the graph of the n-ary arc-consistent version of the
CSP has an automorphism representing the same symmetry as f .

Proof. Let lit(xi) be the set of literals associated with a variable xi ∈ X . By
assumption, f is a variable or value symmetry and, therefore, ∀xi ∈ X, ∃xj ∈ X
such that lit(xj) = f(lit(xi)) and lit(xi) = f(lit(xj)). Also, ∀c ∈ C, each
assignment A over vars(c) has an image assignment f(A) over the variables
{f(x) : x ∈ vars(c)}, which we will write f(vars(c)). Since each assignment
in c has an image over the same set of variables f(vars(c)), and since each
constraint has a different scope, we can call f(c) the unique constraint over
f(vars(c)). This constraint has the same number of tuples as c. Also, if c is
an allowed constraint then so is f(c), and if c is a disallowed constraint then so
is f(c). Note, finally, that since f is a one-to-one mapping of constraints, each
constraint c ∈ C is the image of another constraint c′ ∈ C, i.e., c = f(c′).

The proof will show that if f is a graph automorphism satisfying this condi-
tion, then a literal lit will be unsupported if and only if its image f(lit) under
the automorphism is also unsupported, and it will be supported by constraint
c if and only if its image f(lit) is also supported by f(c). This shows that
every such automorphism is preserved after establishing arc-consistency on the
CSP. Let us first show that lit will be supported by constraint c if and only
if its image f(lit) is also supported by f(c). The property clearly holds if c
is an allowed constraint, by definition of automorphism. If c is a disallowed
constraint, then lit is supported if there is an assignment A over vars(c), whose
literals belong to the current domains of their variables. Suppose the literals in
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f(A) were linked to a disallowed assignment node, then A would be a disallowed
assignment, which is false. Therefore, the literal nodes in f(A) are not linked
to a disallowed assignment node, and so f(A) provides support for f(lit) with
respect to f(c). In the other direction, if A′ provides support for f(lit) with
respect to f(c), then there exists f(A) = A′ and, by the same proof, A provides
support for lit with respect to c.

To complete the proof, if lit is unsupported, then it has no support with
respect to some constraint c and, therefore, f(lit) has no support with respect to
f(c). If f(lit) is unsupported, it has no support with respect to some constraint
c′; c′ = f(c) for some constraint c; and lit has no support with respect to c.

Having established that n-ary arc-consistency preserves variable and value
symmetry, we show that there are other literal symmetries that are not preserved
after establishing arc-consistency.

Example 14. Consider the CSP ({x, y, z}, {1, 2, 3}, C), where C = {x 6= y, y 6=
z, x 6= z, con(x, y), con(z, y)}, and con is defined by the following disallowed
assignments: {〈2, 1〉, 〈2, 3〉}.

x y z
1

2

3

Figure 17: CSP with rotational symmetry.

The disallowed assignments graph, illustrated in Figure 17, admits the ro-
tational symmetry: 〈x = 1, x = 2, x = 3, y = 1, y = 2, y = 3, z = 1, z = 2, z =
3〉 ↔ 〈z = 1, y = 1, x = 1, z = 2, y = 2, x = 2, z = 3, y = 3, x = 3〉. The literal
node x = 2 can be removed because it is incompatible with every value of the
variable y. However, the node y = 1 cannot be removed because it is com-
patible with x = 3 and with z = 3. Our pruning procedure only removes two
literal nodes x = 2 and z = 2 from the graph, and the disallowed assignments
that contain them. As a result, the pruned graph no longer has the rotational
symmetry exhibited by the original graph. ✷

4.3 Combining both techniques to prune the graph

We briefly describe the method to reduce the number of nodes in the full as-
signment graph. The method can logically be divided into three steps:

1. Rewrite the input CSP eliminating expressions and structured objects
2. Establish arc-consistency
3. Map the resulting CSP into a full assignment graph

In practise, the third and first steps are integrated, while arc-consistency
is established within the graphical representation. As indicated in section 3.1,
constraints involving expressions are eliminated by simply flattening them into
the required set of variable assignments.
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The effect of pruning can be dramatic when eliminating literals of set vari-
ables that were represented using the extensional representation. This is indeed
the case for cardinality constraints of the form |xi| = I, where I is an integer
constant, since assignment nodes can then only be created for literals xi = di
for which |di| = I.

Example 15. Consider the CSP (X,D,C) where X = {s1, s2}, Ds1 = Ds2 =
{{}, {1}, {2}, {1, 2}} (that is, s1, s2 ⊆ {1, 2}) and C = |s1 ∩ s2| = 1. The
graph of this CSP using the extensional representation is shown in Figure 18.
As can be seen in the figure, none of the assignments that satisfy the constraint
involves s1 = {} or s2 = {}. The literal nodes associated with these literals can
thus be removed from the graph. ✷

s1 s2

{}

{1}

{2}

{1, 2}

{}

{1}

{2}

{1, 2}

Figure 18: Pruning unnecessary values.

From a theoretical point of view, it is advantageous for the CSP on which
the arc-consistency algorithm is applied to include global constraints with many
variables in their scope. This is because establishing arc-consistency on an
all different constraint is more powerful – and prunes more domain values –
than on the set of binary disequalities that are logically equivalent to it. From
a practical standpoint, however, there are very few implementations of prop-
agation on complex global constraints, such as the cumulative, or cycle con-
straint, that establish arc-consistency. Consequently, there is no guarantee for
the properties of preserving variable or value symmetries to be preserved by
current implementations of global constraints.

More work will be needed to establish a real understanding of the trade-
offs between the extra pruning due to global constraint propagation, and any
loss of symmetries that may result. What seems clear is that once the arc-
consistency has been established, constraints should be rewritten and expressed
using a logically equivalent representation with minimal constraint scopes. An
automated system to perform this rewriting is future work.

5 Experimental evaluation

5.1 Implementation

We have implemented an automatic symmetry detection system for the subset
of ECLiPSe programs [1] that only use finite domain and/or set constraints.
The main components of this system are depicted in Figure 19, with ovals rep-
resenting input/output files, white rectangles representing system components,
and shaded rectangles indicating external components used by the system.

The first component is an ECLiPSe library that receives as input the ECLiPSe

program (possibly divided into the model file and the data file) and outputs a
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Figure 19: System design.

text file containing the set of (syntactic) constraints that would be posted to
the solver during the execution of the program.

This file is, in turn, processed by a graph generator that obtains, for each
constraint in the text file, three possible graph representations: the full assign-
ments graph, a version of Puget’s extensional graph, and a version of Puget’s
boolean graph. This is done as follows. For the full assignments graph, equality
constraints are represented by their allowed assignments, disequality constraints
by their disallowed assignments, the all different constraint is split into the
equivalent conjunction of binary disequalities, sets are represented using the ex-
tensional representation, and cardinality constraints are represented using their
allowed assignments. No other kinds of constraints are needed to represent all
our benchmarks. For Puget’s extensional representation, equality, disequality,
sets and cardinality constraints are represented as before, the all different con-
straint is represented using its disallowed assignments, expressions of the form
op(x) where x occurs only once are treated specially, and any other expression
is treated using temporary variables as described in Section 2.4. Finally, for
Puget’s boolean representation, each benchmark is converted into a boolean
representation as indicated by Section 2.3. Constraint nodes for the original
constraints and variable nodes for the original variables are not created.

Note that while generating the text file significantly slows down the process,
it allows us to easily explore different alternatives for constructing the graph.

The resulting graph is input to the graph automorphism package Saucy [4]
which returns the generating set of the automorphism group. One minor point
must be considered: graph automorphism packages consider a graph to be la-
belled by non-negative integers, whereas our graph nodes have more descriptive
labels. Therefore, our system creates a map from graph labels (e.g. x = 2)
onto integers. This map is also used to convert the numeric labels of the au-
tomorphisms found back into descriptive graph labels, thus representing the
symmetries in a more intuitive form.
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Example 16. Consider the literal nodes of the graph shown in Figure 20 for
the 4-queens problem. The label (xi = di) of each literal node is mapped to
the positive integer shown within each node (for simplicity, the mapping for
assignment nodes is omitted). For this graph, the output of Saucy (omitting
the assignment nodes) is:

12

13

14

15

8

9

10

11

4

5

6

7

0

1

2

3

Q1 Q2 Q3 Q4

1

2

3

4

Figure 20: Literal nodes of 4-queens.

(1 4)(2 8)(3 12)(6 9)(7 13)(11 14)

(0 3)(1 2)(4 7)(5 6)(8 11)(9 10)(12 15)(13 14)

Each line represents one symmetry and each pair of numbers represents a
swap of nodes. The first line corresponds to the diagonal variable-value sym-
metry: 〈Q4 = 2, Q4 = 3, Q4 = 4, Q3 = 3, Q3 = 4, Q2 = 4, Q3 = 1, Q2 =
1, Q1 = 1, Q2 = 2, Q1 = 2, Q1 = 3〉 ↔ 〈Q3 = 1, Q2 = 1, Q1 = 1, Q2 = 2, Q1 =
2, Q1 = 3, Q4 = 2, Q4 = 3, Q4 = 4, Q3 = 3, Q3 = 4, Q2 = 4〉. The second
line corresponds to the value symmetry 〈1, 2〉 ↔ 〈4, 3〉, for each queen. These
two generators can be composed to form the group that represents the eight
symmetries of a square. ✷

Although we conducted most of our experiments using Saucy to find graph
automorphisms, our implementation is not tied to any particular package. Any
graph automorphism package could be used in its place, such as Nauty [10]
or AUTOM [13]. For instance, we have successfully tested Nauty with our
implementation. We would have liked to have used the faster AUTOM [13], but
it is not publicly available.

Section 2.3 described two possible ways of representing set variables: using
an extensional and a boolean representation. We use the former when evaluating
the extensional meaning of constraints and when pruning, and the latter when
producing a graph to be searched for automorphisms. This is because the latter
yields automorphisms which reflect permutations of the possible elements rather
than of the possible sets themselves, a form more suitable to be used as input
to symmetry breaking packages such as GAP-SBDS [7].

Once the symmetries of a CSP have been found, they can be used to aid a
search for the CSP’s solutions. While the symmetries detected by our system
are only of interest to us as stepping stones towards model-based symmetries,
we wanted to connect our current system to ECLiPSe and GAP-SBDS to make
sure everything was working properly. The automatic coupling of symmetry
detection and symmetry breaking is complicated by the distinction between
model and instance. Since the symmetries detected by our system are not
applicable to the model, the system creates a new program composed of the
original model, the goal that specifies the parameter values used as data for this
instance, the symmetries that apply to the instance, and the search predicate
that will be used to find a solution. This program can then be executed in
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ECLiPSe to solve the CSP instance. Only unique solutions – those that are not
symmetrically equivalent to other solutions – are found.

5.2 Benchmarks

Let us now provide a brief summary of the set of benchmarks used in our
experimental evaluation. In doing this we will follow the descriptions given in
CSPLib [8].

Balanced incomplete block design: A balanced incomplete block design is
an arrangement of v distinct objects into b blocks such that each block contains
exactly k distinct objects, each object occurs in exactly r different blocks, and
every two distinct objects occur together in exactly λ blocks. Therefore, a
BIBD is specified by five parameters, (v, b, k, r, λ). This benchmark is listed in
the results as “bibd-v-b-k-r-λ”.

We model this problem as a v× b binary matrix, with constraints that force
exactly r ones per row, k ones per column, and a scalar product of λ between any
pair of distinct rows. The symmetries found by all three implemented methods
are:

• all blocks are interchangeable (variable symmetry)
• all objects are interchangeable (variable symmetry)

These correspond to permutations of the rows and columns of the binary matrix.

Social golfers: The social golfers problem aims at scheduling g groups, with
p golfers per group, over w weeks, in such a way that no golfer plays in the
same group as any other golfer twice. This benchmark is listed in the results as
“golf-w-g-p”.

We model this problem using one set variable for each group, constraining
each group to have cardinality p, and each intersection between any pair of dis-
tinct groups (from any weeks) to have cardinality at most one. The symmetries
found by all three implemented methods are:

• all golfers are interchangeable (value symmetry)
• all weeks are interchangeable (variable symmetry)
• all groups within a single week are interchangeable (variable symmetry)

Golomb ruler: A Golomb ruler is a set of m integers (marks on the ruler)

0 = a1 < a2 < ... < am such that the m(m−1)
2 differences aj − ai, 1 ≤ i < j ≤ m

are distinct. One problem involving such rulers is to find a valid set of m marks.
This benchmark is listed in the results as “golomb-m”.

We model this problem using m integer variables and one integer variable
per pairwise difference. The difference variables must be all different. A single
symmetry is found using both implemented symmetry detection methods, cor-
responding to a 180◦ reflection of the ruler. This is a variable symmetry on the
difference variables, and a variable-value symmetry on the marks variables.

N-queens: The N-queens problem is to place N queens on anN×N chessboard
such that no queen attacks another. We model this problem using one integer
variable per row in the board. Each value, from 1 in N , represents the column
position of the queen in that row. This benchmark is listed in the results as
“queens-N”.
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Puget’s boolean method and our method find all symmetries of a square.
Puget’s extensional method finds only the variable symmetry and value symme-
try, and misses the non-compositional variable-value symmetry. In terms of the
chessboard, it finds the horizontal and vertical reflections but not the rotational
symmetry.

Latin square: A Latin square is an n×n matrix where each element is a value
from 1 to n. Each value must occur exactly once in each column and exactly
once in each row. The problem is to find such a square for a given n. This
benchmark is listed in the results as “latin-n”.

We model this problem as an n× n matrix of integer variables with domain
1 to n. An all different constraint is posted on each row and each column. The
symmetries found by Puget’s boolean method and our method are:

• all rows are interchangeable (variable symmetry)
• all columns are interchangeable (variable symmetry)
• all values are interchangeable (value symmetry)
• the row and column dimensions are transposable (variable symmetry)
• the row and value dimensions are transposable (variable-value symmetry)

As for N-queens, Puget’s extensional method finds the variable and value sym-
metries, but not the non-compositional variable-value symmetry.

Most perfect magic square: A most perfect magic square is an arrangement
of n2 integers, 1 to n2, into an n × n matrix such that the n numbers in all
rows, columns and diagonals (with wrap-around) have the same sum, each 2 by
2 subsquare (with wrap-around) sums to 2(n2 − 1), and all pairs of numbers
distant n

2 on a diagonal sum to n2 − 1. The problem aims at finding such a
square for a given n. This benchmark is listed in the results as “mostperfect-n”.

We model this problem as an n× n matrix of integer variables with domain
1 to n2. Sum constraints are posted on the rows, columns and diagonals to
enforce the magic-square property. Additional sum constraints over all 2 by 2
subsquares, and on the pairs of numbers on the major diagonals, enforce the
most-perfect property.

This model resulted in a graph for n = 4 that was too large for our imple-
mentations of either of Puget’s methods. Using our method, the symmetries
found are:

• the symmetries of a square (rotations through 90, 180 and 270 degrees and
reflections about the horizontal and vertical axes) (variable symmetry)

• the rows (or columns) can be cycled (variable symmetry)
• value i is interchangeable with value n2 − i− 1 (value symmetry)

Steiner triples: The Steiner triple problem of order n consists of finding a set

of n(n−1)
6 triples of distinct integers from 1 to n, such that any pair of triples

has at most one element in common. This benchmark is listed in the results as
“steiner-n”. The symmetries found by all three implemented methods are:

• all triples are interchangeable (variable symmetry)
• all values are interchangeable (value symmetry)

N × N-queens: The N × N-queens problem is to place a coloured queen on
every square of an N ×N chessboard so that no two queens of the same colour
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attack each other. There are N colours. A solution to this problem is equivalent
to N simultaneous non-overlapping solutions to the N-queens problem. This
benchmark is listed in the results as “nnqueens-n”. The symmetries found by
all three implemented symmetry detection methods are:

• the symmetries of the chessboard (variable symmetry)
• all colours are interchangeable (value symmetry)

Graceful graph: The graceful graph problem is to find a labelling f of the ver-
tices of a graph such that f assigns each vertex a unique label from {0, 1, . . . , e}
(where e is the number of edges in the graph), and with each edge (a, b) labelled
by |f(a) − f(b)|, all the edges labels are different. This benchmark is listed in
the results as “graceful-m-n” for the graph Km×Pn. The symmetries found by
all three implemented methods are:

• the symmetries of the graph itself (variable symmetry)
• the value symmetry that swaps a with x − a, where x depends on the
particular instance (value symmetry)

5.3 Results for symmetry detection

Tables 1 and 2 show the results of our experimental evaluation of the automatic
symmetry detection tool. Each row in the tables corresponds to a different
instance of a benchmark problem described in the previous section. A bold font
indicates the best result for that row in the table.

The columns in Table 1 compare the total number of nodes (Nodes) and the
total number of edges in the graph (Edges) when using our implementations of
Puget’s extensional method (Puget’s (Ext)), Puget’s boolean method (Puget’s
(Bool)) and our method (Ours). Also, but only for our method, it shows the
number of generators found for each instance (Gens).

The columns in Table 2 show the total running time in seconds (Total), fol-
lowed by a breakdown (expressed as a proportion of the total time) indicating
where this time is spent. In particular, the table shows the proportion of time
spent in graph generation including the computation of the extensional con-
straints plus the time spent printing the graph to be input to Saucy (Gr) and
the proportion of time taken to read Saucy’s output information and print our
human-readable form (HR). Any time not accounted for by these two columns
is spent running Saucy, and is usually small in comparison. Again, there are
three sets of data; one for Puget’s extensional method (Puget’s (Ext)), one for
Puget’s boolean method (Puget’s (Bool)) and one for our method (Ours). Run-
ning times were measured on a desktop with a 3GHz Intel Pentium 4 CPU and
2 GB RAM, running Linux kernel 2.4.22.

The results show that Puget’s boolean method is much more efficient when
the problem has all-different constraints (e.g. the Latin square instances), since
it handles these constraints specially. When the problem has many complex
expressions (e.g. the Social Golfers instances), our method is more efficient
because it avoids having many temporary variables.

We were unable to run the most perfect magic square problem using either
of Puget’s methods. The model we used has constraints of the form x1 + x2 +
x3 + x4 = c where the xi are variables and c is a constant. For the size 4
instance, each variable has a domain of 16 values. To represent the addition
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Graph Details
Instance Puget’s (Ext) Puget’s (Bool) Ours

Nodes Edges Nodes Edges Nodes Edges Gens

bibd-3-3-1-1-0 216 477 216 477 141 297 4
bibd-6-10-5-3-2 23737 243576 23737 243576 3857 26730 14

golf-2-2-2 1722 4670 1722 4670 1034 2640 6
golf-2-2-3 25242 73854 25242 73854 10650 29344 8
golf-2-3-2 62841 184515 62841 184515 24762 68109 10
golf-3-2-2 4245 11667 4245 11667 2703 7374 8

golomb-4 1245 3332 1006 2708 2484 5456 1
golomb-5 4815 13505 3670 10380 9380 21250 1
golomb-6 14658 42072 10809 31272 27978 64422 1
golomb-7 37632 109424 27181 79583 70665 164297 1

graceful-3-2 1626 4380 1085 3000 2235 5070 4
graceful-5-2 27160 78520 17897 52520 38155 91390 5
latin-10 11000 28000 1300 3000 14500 27000 27
latin-11 15972 41261 1694 3993 21296 39930 30
latin-12 22464 58752 2160 5184 30240 57024 33
latin-13 30758 81289 2704 6591 41743 79092 36
latin-14 41160 109760 3332 8232 56252 107016 39

mostperfect-4 - - - - 80704 314112 5
nnqueens-4 460 976 152 304 464 800 5
nnqueens-5 1110 2525 270 605 1175 2100 6
nnqueens-6 2282 5436 432 1056 2496 4560 7

queens-10 1265 3160 154 396 1570 2940 2
queens-20 9730 26620 514 1596 12940 25080 2
queens-30 32395 91380 1074 3596 44110 86420 2
queens-40 76260 218440 1834 6396 105080 206960 2

steiner-5 3282 9276 3282 9276 2115 5904 6
steiner-6 41975 123090 41975 123090 22440 65850 9
steiner-7 347760 1032689 347760 1032689 154294 459557 12

Table 1: Graph sizes.

as a temporary variable, each assignment over {x1, x2, x3, x4} is represented in
extension, resulting in 164 = 65536 combinations with one node and five edges
per combination. As there are several of these constraints, the resulting graph
is too large for our implementation to handle.

However, Puget reports that his method can handle this problem very effi-
ciently. There are several possible explanations for this discrepancy: (a) he may
use a special representation of these “sum” constraints, like for all-different, (b)
he may detect only variable symmetries in his experiments, or (c) his implemen-
tation may be more efficient than ours (for example, using AUTOM instead of
Saucy). While (a) is the most likely answer, we do not see any natural way to
model x1 + x2 + x3 + x4 = c as a conjunction of boolean constraints. Thus,
Puget’s second boolean model - without variable nodes or constraint nodes - is
not naturally applicable. It is also possible that Puget used a combination of
the standard boolean method for this constraint, and the conjunctive boolean
model for the all different constraint, but Puget offers no proof that for a graph
combining both kinds of boolean representation, its automorphisms correspond
to symmetries of the CSP. Indeed, the two boolean representations associate a
different semantics to a literal node, so having both in the same graph seems
problematic.
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Running Time
Instance Puget’s (Ext) Puget’s (Bool) Ours

Total Gr HR Total Gr HR Total Gr HR

bibd-3-3-1-1-0 0.04 0.50 0.50 0.04 0.50 0.50 0.02 .50 .50
bibd-6-10-5-3-2 20.80 0.90 0.07 20.61 0.90 0.07 1.96 .83 .14

golf-2-2-2 0.50 0.78 0.20 0.50 0.78 0.20 0.18 .72 .28
golf-2-2-3 17.16 0.89 0.09 16.90 0.89 0.08 2.71 .73 .23
golf-2-3-2 44.68 0.87 0.10 44.14 0.87 0.10 6.72 .72 .22
golf-3-2-2 1.36 0.76 0.21 1.32 0.76 0.21 0.56 .71 .25

golomb-4 0.28 0.86 0.14 0.26 0.85 0.15 0.41 .85 .12
golomb-5 1.41 0.91 0.08 1.31 0.90 0.08 2.00 .91 .08
golomb-6 5.36 0.93 0.05 5.03 0.94 0.05 7.67 .93 .05
golomb-7 16.97 0.95 0.04 15.90 0.95 0.03 24.45 .94 .03

graceful-3-2 0.22 0.68 0.27 0.19 0.68 0.32 0.31 .71 .26
graceful-5-2 6.20 0.76 0.19 4.95 0.82 0.15 8.41 .82 .14
latin-10 1.68 0.34 0.51 0.46 0.26 0.70 2.78 .48 .41
latin-11 2.53 0.33 0.49 0.61 0.25 0.70 4.27 .47 .40
latin-12 3.73 0.33 0.47 0.78 0.24 0.72 6.37 .47 .39
latin-13 5.71 0.30 0.42 1.01 0.25 0.70 9.17 .46 .37
latin-14 7.50 0.31 0.43 1.31 0.25 0.70 12.86 .46 .36

mostperfect-4 - - - - - - 31.70 .85 .10
nnqueens-4 0.03 0.66 0.33 0.01 0.00 1.00 0.05 .60 .40
nnqueens-5 0.09 0.44 0.55 0.05 0.60 0.40 0.12 .58 .42
nnqueens-6 0.20 0.50 0.50 0.08 0.38 0.62 0.30 .60 .33

queens-10 0.08 0.63 0.38 0.03 0.33 0.67 0.15 .73 .27
queens-20 0.74 0.62 0.30 0.13 0.31 0.69 1.61 .80 .16
queens-30 2.74 0.63 0.25 0.33 0.33 0.67 6.62 .82 .13
queens-40 7.04 0.63 0.22 0.65 0.35 0.63 18.43 .84 .11

steiner-5 1.42 0.86 0.12 1.39 0.86 0.12 0.46 .74 .24
steiner-6 28.12 0.88 0.09 27.89 0.88 0.09 5.92 .74 .21
steiner-7 488.38 0.93 0.05 492.85 0.93 0.05 57.49 .76 .17

Table 2: Running times.

5.4 Results for symmetry breaking

As mentioned before, we used the symmetries detected by our implementation to
automatically break symmetries during search, using the GAP-SBDS [7] library
for ECLiPSe. Results of the experiments for symmetry breaking are shown in
Table 3. For each benchmark, times are shown for finding all solutions without
and with SBDS. The numbers in parentheses show the ratio obtained by dividing
the time with SBDS by the time without SBDS. Note that the times do not
include the time to find the symmetries, although this detection time is shown
in a separate column. We have separated these times because the techniques
developed in this paper are targeted towards finding symmetries in models -
though in this paper we only find symmetries in problem instances. If we can
achieve this aim, the time to find the symmetries will be amortised over all the
problem instances in the class defined by the model, and in this case will be
small in comparison with problem-solving time.

The aim of this section is not to demonstrate that speedups can be achieved
by symmetry breaking methods (this has been the subject of many other papers,
e.g. [5, 14, 15]) but, rather, to show that our system is implemented and that the
output of our symmetry detection tool can be easily integrated with a symmetry
breaking tool, such as GAP-SBDS. Still, as shown in Table 3, SBDS performs
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Running Time (seconds) Detect
Instance No SBDS SBDS(ratio) (seconds)

nnqueens-7 > 30min 1.62 (-) 0.7
steiner-7 392.55 0.87 (0.002) 58.0
bibd-7-7-3-3-1 157.89 1.01 (0.006) 0.55
graceful-4-2 296.02 2.57 (0.008) 2.2
golf-3-3-2 76.34 0.77 (0.01) 21.0
queens-13 48.23 118.09 (2.45) 0.5
golomb-6 8.73 67.89 (7.78) 7.5
latin-8 81.12 647.21 (7.98) 1.0

Table 3: Running times to find all solutions with and without SBDS.

much better than a simple search when finding all solutions for more than half
the benchmarks, with most speedups being of several orders of magnitude. For
the rest, the overhead of symmetry breaking is greater than the time saved by
reducing the search space.

6 Conclusion

Symmetry as Graph Automorphisms

This paper has explored the extension and application of constraint symmetry
detection based on graph automorphisms, and its integration into an algorithm
that exploits these symmetries during search.

Previous symmetry detection using graph automorphisms can be divided
into two main directions. The first dating back to Crawford et.al. [3] represents
constraints as sets of disallowed tuples. This approach is simple but can result
in large graphs since a simple constraint (such as an equation) may require a
great many disallowed edges in its representation. Consequently, this paper has
explored the use of allowed edges, as well, for representing constraints. In doing
so, it has studied a second approach, recently espoused in a sophisticated form
by Puget [13], that represents constraints more flexibly. This flexibility can be
exploited to keep the graph small, but it could lead to either representing too
few symmetries, or - worse still - too many.

A flexible, powerful, and correct graph representation

Too few symmetries may be represented if the graph includes a node for each
variable, so that only (combinations of) value and variable symmetries can be
represented. Therefore, this paper has described a graph representation without
such nodes. The drawback of such a representation is that a graph automor-
phism could map sets of nodes representing solutions to the original problem, to
sets of nodes which do not represent a solution, because they do not “cover” all
the variables. Accordingly, we imposed sufficient conditions on the new graph
representation to preclude such automorphisms.

Too few symmetries may also be represented if the graph distinguishes dif-
ferent (kinds of) constraints. This would prevent, for example, a disequation
from being involved in a symmetry with an all different constraint. To max-
imise the number of potential symmetries, the graph representation introduced
in this paper made no distinction between different constraints. Moreover, it
made no distinction between an edge connecting two literals explicitly allowed
by a binary constraint, or allowed because their associated variables do not
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belong to the scope of any constraint. Furthermore, it made no distinction be-
tween an edge connecting two literals explicitly disallowed due to a constraint,
or disallowed because they represent distinct values for the same variables. The
main drawback of such a representation is the sheer size of the resulting graph:
in principle an allowed edge is required for every compatible set of nodes, and
a disallowed edge between every incompatible set. Therefore, this paper in-
troduced a graph representation that uses as few edges as possible while still
maximising the number of potential symmetries. Since this requires all con-
straints to be represented extensionally, keeping the size of the graph as small
as possible is very important, particularly for variables with large domains, such
as set variables.

Too many symmetries are represented by a graph if it has automorphisms
that do not correspond to symmetries of the CSP. This can arise, for example,
if the existence of an edge does not have a unique meaning. For example, the
existence of two edges representing the only two allowed tuples for a single
constraint mean that one should be in a solution, while the existence of two
edges representing the only allowed tuples from two different constraints mean
that both should be in a solution. Also, the absence of an edge should have
a unique meaning, such as that the two unconnected nodes are unconstrained,
or that they are incompatible (e.g. if they represent two different values for a
variable).

For a graph with edges representing allowed tuples of a constraint, but with-
out variable nodes or constraint nodes, it is not trivial to avoid having too many
symmetries. However, for the full assignment graph introduced in this paper, it
was proven that every graph automorphism corresponds to a problem symmetry.

Reducing the size of the graph

The paper introduced two additional ways of reducing the size of the graph
representation. The first approach is to achieve arc-consistency on the original
problem, and build a graph representing this reduced problem. The paper
showed that achieving arc-consistency by reducing the domains of the variables
preserves the variable and value symmetries detected by our approach. However,
it also gave an example to show that non-compositional variable-value symmetry
may be lost as a result of achieving arc-consistency.

The second approach is to represent a constraint by a logically equivalent
conjunction of constraints, each with a smaller scope. This was shown to reduce
the size of the graphical representation, and potentially improve pruning.

In summary, when compared to Puget’s approach, the full assignment graph
is more restricted than the combination of Puget’s different approaches: exten-
sional, intensional, standard boolean, and conjunctive boolean. Indeed, the full
assignment graph admits only allowed and disallowed extensional constraints.
Nevertheless, our approach can be applied to either boolean model of the prob-
lem. The resulting benefit is that we have been able to eliminate variable nodes
and constraint nodes from the full assignment graph, so as to be able to capture
non-composable variable-value symmetries and, at the same time, obtain proofs
that graph automorphisms correspond to symmetries of the CSP even when
combinations of allowed and disallowed constraints are represented. Puget never
attempted such a proof and, without the restrictions introduced in this paper, it
is shown that certain combinations would lead to graphs whose automorphisms
did not correspond to symmetries of the CSP. Moreover, and perhaps surpris-
ingly, it is shown that the extensional graph representation does not necessarily
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lead to larger graphs than the intensional representation for the boolean model:
even for the all different constraint exampled by Puget, there is an extensional
representation with comparable size.

Implementation and next objectives

The whole system has been implemented using the CLP system ECLiPSe and
the graph automorphism package Saucy. The CSP is automatically transformed
into a graph, the automorphisms are elicited and expressed as constraint sym-
metries of the CSP, and the CSP is solved using the discovered symmetries to
automatically prune the search tree. Experiments were performed on a range
of benchmarks to establish the correctness of the implementation.

The approach presented in this paper is designed to be able to detect as wide
a class of constraint symmetries as possible. The efficiency of the symmetry
detection method has been a secondary consideration, since it is not planned to
be used to detect and apply symmetries for each new problem instance. Rather,
the aim is to detect as many representational symmetries as possible for several
problem instances, so that they can be tested against a generic problem model,
to determine which ones hold for the whole problem class. These symmetries can
then be used to accelerate the solving of any instance of the model. Accordingly,
the cost of detecting symmetries can be amortised across all the instances of the
problem which are eventually solved using the detected symmetries.

Further, the resulting model-based approach will be able to scale up the
applicability of our automatic symmetry detection system, since the detected
symmetries can be used to accelerate the solving of large practical problems
involving hundreds or thousands of variables and constraints.
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