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Abstract. While several powerful methods exist for automatically de-
tecting symmetries in instances of constraint satisfaction problems (CSPs),
current methods for detecting symmetries in CSP models are limited to
the kind of symmetries that can be inferred from the global constraints
present in the model. Herein, a new approach for detecting symmetries in
CSP models is presented. The approach is based on first applying pow-
erful methods to a sequence of problem instances, and then reasoning on
the resulting instance symmetries to infer symmetries of the model. Our
results show that this approach deserves further exploration.

1 Introduction

A constraint satisfaction problem (CSP) consists of a set of variables, a set
of domains (one per variable), and a set of constraints on the variables. CSPs
can often be separated into two parts: the model and the data. The model
is a parameterised version of the CSP that, while formally defining the type of
variables, domains, and constraints, does not completely determine their number
or their values. The data part provides concrete values to the parameters and, as
a result, completely determines the number of variables, their domains and the
constraints. Thus, while the model represents a class of CSPs, the model plus
the data specifies an instance of that class (i.e., a particular CSP).

For example, the Latin square problem of size 3 involves a 3 × 3 square,
where each of the 9 cells in the square takes a value from [1..3], in such a way
that each value occurs exactly once in each row and once in each column. The
associated CSP can be defined using 9 variables, each with finite domain 1..3,
and 18 disequality constraints. Alternatively, it can be separated into a model
that is parameterised on the board size N (N ×N variables, each with domain
1..N , and appropriate constraints), and the data part which simply indicates
N = 3. Different instances (i.e., CSPs) of the class can be obtained with the
same model simply by modifying the value of N in the data.

Solving a CSP can be made more efficient by exploiting the symmetries of
the problem. This is because, during search, one can omit parts of the search
space that are symmetric to others already explored. If these already explored
parts led to a solution, the symmetric search space is known to contain only
symmetric solutions (which can be automatically generated without search). If
they led to failure, the symmetric search space is known not to contain solutions.



Considerable progress has been made in the automatic detection of symme-
tries of CSPs and their exploitation in speeding up the search (e.g., [9, 1, 11, 17,
12, 15, 8, 13, 3, 5, 10, 6, 7]. Unfortunately, the most powerful methods ([11, 1]) can
only be applied to a CSP, rather than to its model. Therefore, the symmetries
detected can only be used to accelerate the solving process for that CSP, and
the cost of detecting these symmetries cannot be amortised over all CSPs in the
class. Furthermore, the computation cost of these methods grows with the size
of the CSP in such a way as to render them impractical for real-size CSPs.

While there are automatic symmetry detection methods for CSP models [14,
16], to our knowledge, they can only detect a relatively small set of “simple”
symmetries (i.e., piecewise value and piecewise variable interchangeability), and
only from the global constraints in the model. We propose a radically new ap-
proach that (1) uses symmetry detection on a series of small CSPs to elicit can-
didate symmetries, (2) parameterises these candidate symmetries to be defined
over the model rather than over a particular CSP, and (3) determines whether
these candidates are indeed symmetries of the model – herein referred to as the
parameterised CSP. Our results show the approach has considerable potential.
Furthermore, we believe the approach can be used to infer from the model many
other kinds of information useful for optimisation.

2 Background and Definitions

A CSP is a tuple (X,D,C, dom) where X represents a set of variables, D a set
of domains, C a set of constraints, and where dom is a function from X to D,
so that dom(x) ∈ D denotes the domain of variable x ∈ X. By an abuse of
notation, when all variables have the same domain, D will simply denote this
domain and dom will be omitted.

For a given CSP, a literal lit is of the form x = d where x ∈ X and d ∈ dom(x).
We will use var(lit) to denote its variable x. We denote the set of all literals of
a CSP P by lit(P ). An assignment A is a set of literals. An assignment over a
set of variables V ⊆ X has exactly one literal x = d for each variable x ∈ V . An
assignment over X is called a complete assignment.

A constraint c is defined over a set of variables, denoted by vars(c), and
specifies a set of allowed assignments over vars(c). An assignment over vars(c)
that is not allowed by c is disallowed by c. An assignment A over V ⊆ X
satisfies constraint c if vars(c) ⊆ V and the projection of A over vars(c) (i.e.,
{lit ∈ A|var(lit) ∈ vars(c)}) is allowed by c. A solution is a complete assignment
that satisfies every constraint in C.

Example 1. The CSP for the Latin square problem of size 3 introduced before
can be defined as follows:
X = {x11, x12, x13, x21, x22, x23, x31, x32, x33}
D = {1, 2, 3}
C = {x11 6= x12, x11 6= x13, x12 6= x13, x21 6= x22, x21 6= x23, x22 6= x23,

x31 6= x32, x31 6= x33, x32 6= x33, x11 6= x21, x11 6= x31, x21 6= x31,
x12 6= x22, x12 6= x32, x22 6= x32, x13 6= x23, x13 6= x33, x23 6= x33}
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where variable xij represents the cell in row i, column j. The set A = {x21 =
1, x22 = 2, x23 = 2} is an assignment containing 3 literals. While A satisfies
constraint x21 6= x22 (since {x21 = 1, x22 = 2} is allowed by it), A does not
satisfy x22 6= x23 (since {x22 = 2, x23 = 2} is disallowed by it).�

A solution symmetry f of a CSP P is a permutation of lit(P ) that preserves
the set of solutions [1], i.e., a bijection from literals to literals that maps solu-
tions to solutions. Two important kinds of solution symmetries are induced by
permuting either variables or values.

A permutation f of the set of variables X induces a permutation pf of literals
by defining pf (x = d) as f(x) = d. A variable symmetry is a permutation of the
variables whose induced literal permutation is a solution symmetry [10]. Since the
inverse of any such permutation is also a symmetry, we will use 〈x1, . . . , xn〉 ↔
〈x1′ , . . . , xn′〉, where x1, . . . , xn, x1′ , . . . , xn′ ∈ X to denote the symmetry that
maps each xi to xi′ leaving the remaining variables in X unchanged.

A set of domain permutations fdom(x), one for each x ∈ X, induces a per-
mutation pf of literals by defining pf (x = v) as x = fdom(x)(v). A value sym-
metry is a set of domain permutations whose induced literal permutation is
a solution symmetry [10]. We will use 〈di1, . . . , din〉 ↔ 〈di1′ , . . . , din′〉, where
{di1, . . . , din} = dom(xi) = {di1′ , . . . , din′}, to denote a value symmetry for
xi ∈ X. A variable-value symmetry is any solution symmetry that is not a vari-
able or a value symmetry. Note that it is not necessarily a composition of those
variable and value symmetries that exist in the CSP.

Several methods [12, 11, 1] have been proposed to automatically detect the
symmetries of a CSP by constructing its (hyper-)graph representation, and us-
ing graph automorphism techniques on it. Our approach uses the technique of
Mears et al. [9] since it is more powerful than that of Puget [11] without being
as computationally demanding as that of Cohen et al. [1]. However, any such
method can be used. The general idea is to (a) represent every literal as a node,
(b) represent every assignment disallowed by a constraint as a hyper-edge, and
(c) add an edge between every two literals x = d1 and x = d2 where d1 6= d2.

Example 2. The Latin square CSP of Example 1 has (a) variable symmetries that
swap any columns: 〈x11, x21, x31〉 ↔ 〈x12, x22, x32〉, 〈x11, x21, x31〉 ↔ 〈x13, x23, x33〉,
and 〈x12, x22, x32〉 ↔ 〈x13, x23, x33〉, (b) similar variable symmetries that swap
any rows, and (c) variable-value symmetries that transpose the rows, column and
value dimensions, and correspond to flipping the 3 × 3 square using a diagonal.
The associated graph (left hand side of Figure 1) has 9×3=27 nodes (labelled
[i, j]
k

) representing the 27 literals xi,j = k where i, j, k ∈ [1..3], and (18*3) + (9*3)
edges representing the 3 assignments disallowed by each of the 18 constraints,
and the 3 extra edges needed to disallow each pair of values of the 9 variables.�

Given a hyper-graph 〈V,E〉, where V is a set of nodes, and E a set of un-
weighted and undirected hyper-edges, an automorphism f of graph 〈V,E〉 is a
permutation of the nodes (i.e., a bijection among nodes) such that ∀{ni, · · · , nj} ∈
E : {f(ni), · · · , f(nj)} ∈ E. Since, for a given CSP P , the graph has a node for
each literal in lit(P ), each graph automorphism has a direct interpretation as
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Fig. 1. Graphs and generators for LatinSquare[3] and LatinSquare[4]

a permutation of the literals in lit(P ) and corresponds to a symmetry of P .
Thus, in an abuse of terminology, we will sometimes use symmetry of a graph
as a shorthand for automorphism of the graph associated with a CSP. Standard
tools, such as Saucy [2], can compute the automorphisms of a graph and return
its symmetry group (i.e., all possible symmetries) by means of a set of generators
(a possibly minimal set of symmetries that can be used to generate all others).

Example 3. For the Latin square graph of size 3 given in Example 2, Saucy re-
turns the following set of generators (illustrated in the left hand side of Figure 1):

A 〈n121, n122, n123, n221, n222, n223, n321, n322, n323〉 ↔
〈n131, n132, n133, n231, n232, n233, n331, n332, n333〉

B 〈n211, n212, n213, n221, n222, n223, n231, n232, n233〉 ↔
〈n311, n312, n313, n321, n322, n323, n331, n332, n333〉

C 〈n121, n122, n123, n131, n132, n133, n231, n232, n233〉 ↔
〈n211, n212, n213, n311, n312, n313, n321, n322, n323〉

D 〈n111, n121, n131, n211, n221, n231, n311, n321, n331〉 ↔
〈n112, n122, n132, n212, n222, n232, n312, n322, n332〉

E 〈n112, n122, n132, n212, n222, n232, n312, n322, n333〉 ↔
〈n113, n123, n133, n213, n223, n233, n313, n323, n333〉

F 〈n112, n113, n123, n212, n213, n223, n312, n313, n323〉 ↔
〈n121, n131, n132, n221, n231, n232, n321, n331, n332〉

where node nijk represents literal xi,j = k. A states that columns 2 and 3 can
be swapped, B that rows 2 and 3 can be swapped, C that the square can be
reflected across the top-left/bottom-right diagonal, D that values 1 and 2 can be
swapped, E that values 2 and 3 can be swapped, and F that the second dimension
of the square can be swapped with the value dimension. Their combination
results in the symmetries given for Example 2 (e.g., to swap columns 1 and 2
(〈x11, x21, x31〉 ↔ 〈x12, x22, x32〉) apply first F, then D, and then F).�
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3 From CSPs to parameterised CSPs

There is no standard notation to distinguish between a CSP and its parame-
terised version. Herein, we denote a parameterised CSP as CSP [Data], where
Data represents the parameters, and a particular CSP in that class as CSP [d],
where d is the value given to Data to yield that CSP. While we will use math-
ematical notation to specify parameterised CSPs, any high-level modelling lan-
guage can be used as long as it separates the model from the data, has multi-
dimensional arrays of finite domain variables, and supports iteration over them.

Example 4. The parameterised LatinSquare[N] for the CSP of Example 1:

X[N ] = {squareij |i, j ∈ [1..N ]}
D[N ] = [1..N ]
C[N ] = {squareij 6= squareik|i, j ∈ [1..N ], k ∈ [j + 1..N ]}∪

{squareji 6= squareki|i, j ∈ [1..N ], k ∈ [j + 1..N ]}

defines N × N integer decision variables (squareij) with values in [1..N ], and
conjoins the inequality constraints for every row (i) and column (j). �

Our aim is to determine the symmetries of every CSP in the class repre-
sented by CSP [Data], i.e., the symmetries of CSP [d], for every d possibly given
to Data. To do so we define the parameterised graph G[Data] of CSP [Data]
in such as way that, when instantiated by giving a value d to Data, G[d]
yields the graph of CSP [d]. Formally, G[Data] is obtained from CSP [Data] =
(X[Data], D[Data], C[Data], dom[Data]) as follows:

– G[Data] = 〈V [Data], Ev[Data] ∪ Ec[Data]〉
– V [Data] = {xi = di|xi ∈ X[Data], di ∈ dom(xi)[Data]}, i.e., V [Data] con-

tains a node for every literal in CSP [Data].
– Ev[Data] = {{x = di, x = dj}|x ∈ X[Data], di, dj ∈ dom(x)[Data], di 6= dj},

i.e., an edge exists for every two nodes that map a variable to different values.
– Ec[Data] =

⋃
c∈C[Data]{A|vars(A) = vars(c), A is an assignment disallowed

by c}, i.e., a hyper-edge exists for every disallowed assignment A of every
constraint c, and connects the nodes associated with all literals in A.

Note that G[Data] is simply a syntactic construct that represents a class of
graphs, much as CSP [Data] represents a class of CSPs.

Example 5. The parameterised graph G[N ] associated with LatinSquare[N ] is
as follows. V [N ] is defined as {nijv|i, j, v ∈ [1..N ]} where nijv denotes literal
squareij = v. Ev[N ] is defined as {{nijv1 , nijv2}|i, j, v1, v2 ∈ [1..N ], v1 6= v2},
while Ec[N ] is obtained by transforming the two constraints in LatinSquare[N ]
into the set of assignments they disallow:

Ec[N ] = {{nijv, nikv}|i, j, v ∈ [1..N ], k ∈ [j + 1..N ]}∪
{{njiv, nkiv}|i, j, v ∈ [1..N ], k ∈ [j + 1..N ]}
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Note that the nodes in G[N ] maintain some of the knowledge about the structure
of LatinSquare[N ] thanks to the reuse of the i and j identifiers appearing in
LatinSquare[N ]. This is important to automate the construction of the edges in
G[N ] and, as we will see later, to parameterise symmetries of a CSP.�

We can now give a definition of a parameterised symmetry.

Definition 1. Given a parameterised CSP [Data] and its parameterised graph
G[Data], a parameterised permutation f [Data] is a bijection of the nodes of
G[Data]. That is, for all values d given to Data, f [d] permutes the nodes of
G[d]. A parameterised symmetry of CSP [Data] is a parameterised permutation
f [Data] of the nodes in G[Data] s.t. for all values d given to Data, f [d] is a
symmetry (i.e., an automorphism) of G[d].

We denote by S[Data] the group of parameterised symmetries of CSP [Data].
Note that for all values d given to Data, S[d] is a subset of the symmetries
in CSP [d]. The subset is proper if some symmetry in CSP [d] does not apply
to all other instances of the CSP. In other words, parameterised symmetries
must be determined by information explicitly represented in CSP [Data], without
requiring information only present in a particular d.

4 A framework for detecting parameterised symmetries

As the main concepts of parameterised CSPs and parameterised symmetries have
been introduced, we can now turn to the problem of detecting parameterised
symmetries for a class of CSPs. Our approach is based on a generic framework
which, given a CSP [Data], performs the following steps:

1. Detect symmetries of CSP [d] for a number of values d given to Data,
2. Lift them to obtain parameterised permutations of the literals in CSP [Data],
3. Filter the parameterised permutations to keep only those that are likely to

be parameterised symmetries,
4. Prove that the selected parameterised permutations are indeed parame-

terised symmetries.

Note that while the parameterised CSP is a crucial element of our framework,
the parameterised graph is currently used only as a means to define parame-
terised symmetries. However, as shown later, we plan to use the parameterised
graph to obtain a better method than we currently have for step four.

4.1 Step one: Detecting symmetries for some CSP [d]

The first step of our generic framework can be realised in different ways by the
choice of parameter values and of symmetry detection method. These choices are
somewhat mutually dependent. For example, using a powerful symmetry detec-
tion method will usually force the parameter values to be small. As mentioned
before, our implementation uses the detection method of Mears et al. [9], which
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returns the group of symmetries in a CSP [d] as a set of group generators3. Also,
our implementation assumes that the parameter Data is a tuple of k integers,
(p1, p2, . . . , pk) and chooses parameter values d by increasing each component of
the tuple individually, starting from some user-defined base tuple (typically the
smallest meaningful instance of the class).

Example 6. For LatinSquare[N], Data has a single component: the board size
N . If the user provides (3) as the base tuple, we increment the component
twice obtaining three values for d: (3), (4), and (5). For the social golfers prob-
lem (see Section 5), Data has three components: the number of weeks, groups
per week and players per group. If (2, 2, 2) is the base tuple, we increment
twice each component to get nine values for d (seven of which are distinct):
(2, 2, 2), (3, 2, 2), (4, 2, 2), (2, 2, 2), (2, 3, 2), (2, 4, 2), (2, 2, 3), (2, 2, 2), and (2, 2, 4).�

4.2 Step two: Lifting symmetries to parameterised permutations

This step requires taking every symmetry g detected in step one for any of
the CSP [d] considered, and determining one or more parameterised permuta-
tion(s) f [Data] for which f [d] = g. Since computing f [Data] from g alone is
quite a task, our implementation uses a much simpler, although incomplete,
method: it first defines a set of “common” parameterised symmetries Per =
{f1[Data], · · · , fm[Data]}, and then checks every generator g against them.

The success of our implementation relies on the parameterised CSPs having
literals that can be arranged into an n-dimensional matrix, and having param-
eterised symmetries that permute particular matrix elements, such as rows or
columns. These are the kind of “common” symmetries that we will add to Per.

Consider a CSP [Data] with an n-dimensional matrix-like structure L[Data],
whose elements correspond to the literals in CSP [Data] (and, thus to the nodes
inG[Data]). The exact number of elements in each of the n dimensions of L[Data]
depends on the value given to Data and can be obtained by means of a function
Dims[Data] = (d1, d2, . . . , dn), where di, i ∈ [1..n] indicates the exact number of
elements in the ith dimension.

Example 7. The parameterised LatinSquare[N ] problem has a matrix like struc-
ture, since its literals can be arranged into a 3-dimensional matrix where each
literal squareij = k is indexed as L[N ]i,j,k. This is clearly visible in Figure 1,
where the only difference between G[3] and G[4] are the exact values of each
dimension: Dims[3] = (3, 3, 3) while Dims[4] = (4, 4, 4).�

Parameterised permutations can then be easily expressed as permutations
on the elements of L[Data] without reference to any specific value d given to
Data. This allows us to express a parameterised permutation as a single entity,
even though each specific instantiation might involve permuting different nodes.
Some common parameterised permutations for a CSP [Data] with n-dimensional
matrix L[Data] and Dims[Data] = (d1, d2, . . . , dn) are:

3 Since the symmetry detection method chosen is incomplete (i.e., might miss some
symmetries), our implementation of the generic framework is also incomplete.
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– Value swap: interchanges values v and v′ of the kth dimension (e.g., sym-
metry represented by generator D in Figure 1) and is defined as:
L[Data]i1,...,ik−1,v,ik+1,...,in ↔
L[Data]i1,...,ik−1,v′,ik+1,...,in ∀ij ∈ [1..dj ], j ∈ [1..n].

– All values swap: interchanges all values of the kth dimension (e.g. symme-
tries represented by generators D, E, and their combinations in Figure 1)
and is defined as: L[Data]i1,...,ik−1,v,ik+1,...,in ↔ L[Data]i1,...,ik−1,v′,ik+1,...,in ,
∀v, v′ ∈ [1..dk], v 6= v′, ij ∈ [1..dj ], j ∈ [1..n].

– Dimension invert: interchanges every value v of the kth dimension with
value n − v + 1 (e.g., symmetry represented by generator A and by gen-
erator A1 in Figure 2) and is defined as: L[Data]i1,...,ik−1,v,ik+1,...,in ↔
L[Data]i1,...,ik−1,n−v+1,ik+1,...,in , ∀v ∈ [1..dk], ij ∈ [1..dj ], j ∈ [1..n].

– Dimension swap: swaps kth and k′th dimensions (e.g., symmetry repre-
sented by generator B in Figure 2) and is defined as:
L[Data]i1,...,ik−1,ik,ik+1,...,ik′−1,ik′ ,ik′+1,...,in ↔
L[Data]i1,...,ik−1,ik′ ,ik+1,...,ik′−1,ik,ik′+1,...,in , ∀ij ∈ [1..dj ], j ∈ [1..n].

Example 8. The generators found for LatinSquare[3] in Example 3 can be auto-
matically matched to the following parameterised permutations for L[N ]:

A value swap with k = 2, v = 2, v′ = 3: L[N ]i2l ↔ L[N ]i3l, ∀i, l ∈ [1..N ]
B value swap with k = 1, v = 2, v′ = 3: L[N ]2jl ↔ L[N ]3jl, ∀j, l ∈ [1..N ]
C dimension swap with k = 1, k′ = 2: L[N ]ijl ↔ L[N ]jil, ∀i, j, l ∈ [1..N ]
D value swap with k = 3, v = 1, v′ = 2: L[N ]ij1 ↔ L[N ]ij2, ∀i, j ∈ [1..N ]
E value swap with k = 3, v = 2, v′ = 3: L[N ]ij2 ↔ L[N ]ij3, ∀i, j ∈ [1..N ]
F dimension swap with k = 2, k′ = 3: L[N ]ijl ↔ L[N ]ikl, ∀i, j, l ∈ [1..N ]

Consider the graph G[4] associated with LatinSquare[4], shown in the right
hand side of Figure 1. Saucy finds 9 generators for this graph. Six of them are
simple extensions of those found for G[3]. For example, the extension of A is:

A 〈n121, n122, n123, n124, n221, n222, . . . , n321, . . . , n421, . . .〉 ↔
〈n131, n132, n133, n134, n231, n232, . . . , n331, . . . , n431, . . .〉

and similarly for B, C, D, E and F. The other three generators found are:

A1〈n131, n132, n133, n134, n231, n232, . . . , n331, . . . , n431, . . .〉 ↔
〈n141, n142, n143, n144, n241, n242, . . . , n341, . . . , n441, . . .〉

B1〈n311, n312, n313, n314, n321, n322, . . . , n331, . . . , n341, . . .〉 ↔
〈n411, n412, n413, n414, n421, n422, . . . , n431, . . . , n441, . . .〉

E1〈n113, n123, n133, n143, n213, n223, . . . , n313, . . . , n413, . . .〉 ↔
〈n114, n124, n134, n144, n214, n224, . . . , n314, . . . , n414, . . .〉

The generators A, B, C, D, E and F in G[4] match the parameterised
permutations used for G[3], while A1, B1 and E1 match value swap with:

A1 k = 2, v = 3, v′ = 4: L[N ]i3l ↔ L[N ]i4l,∀i, l ∈ [1..N ]
B1 k = 1, v = 3, v′ = 4: L[N ]3jl ↔ L[N ]4jl,∀j, l ∈ [1..N ]
E1 k = 3, v = 3, v′ = 4: L[N ]ij3 ↔ L[N ]ij4,∀i, j ∈ [1..N ]

The generators found by Saucy for LatinSquare[5] are the simple extensions of
A, A1, B, B1, C, D, E, E1 and F (which can be parameterised as before),
plus three more A2, B2, and E2, which can be parameterised as:
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A2 k = 2, v = 4, v′ = 5: L[N ]i3l ↔ L[N ]i4l, ∀i, l ∈ [1..N ]
B2 k = 1, v = 4, v′ = 5: L[N ]3jl ↔ L[N ]4jl, ∀j, l ∈ [1..N ]
E2 k = 3, v = 4, v′ = 5: L[N ]ij3 ↔ L[N ]ij4,∀i, j ∈ [1..N ]�

Considering a symmetry g in isolation is not always productive. This is be-
cause some parameterised permutation patterns, when instantiated, correspond
to a group of symmetries rather than to a single symmetry. For example, the “all
values swap” pattern (which interchanges all values in a dimension) is a combina-
tion of at least two generator symmetries. Thus, to detect such a parameterised
pattern we cannot simply parameterise each symmetry on its own; we must
consider groups of symmetries {g1, · · · , gm} such that f [d] = {g1, · · · , gm}.

For the “all value swap” case, we group symmetries by keeping track of any
pair of value-swap pattern symmetries which operate on the same dimension and
whose interchanged values overlap. These are combined into a single symmetry
stating that all values involved can be freely interchanged. Our implementation
considers the “all values swap” pattern matched if, by applying this kind of
combination until a fixpoint is reached, we obtain a symmetry that interchanges
all [1..dk], where dk is the value returned by Dims[d] for dimension k.

Example 9. The generators D and E for LatinSquare[3] form an instance of the
“all value swap” pattern L[N ]ijv ↔ L[N ]ijv′ ,∀v, v′ ∈ [1..N ], v 6= v′, i, j ∈ [1..N ].
The generators D, E and E1 for LatinSquare[4] form the same pattern.�

4.3 Step three: Filtering parameterised permutations

Step two identifies our candidate parameterised symmetries. However, it is likely
that some of these candidates apply only to a few instances, rather than to the
entire class. We would like to eliminate unlikely permutations before performing
the (possibly expensive) proof step. Our implementation uses a simple (and again
incomplete) heuristic which selects as likely candidates the intersection of the
parameterised permutations present in all tested instances.

Unfortunately, the success of such an intersection relies on Saucy returning
the same (or equivalent) set of generators for each CSP [d]. This is because,
as mentioned before, our implementation only attempts to parameterise the
generators returned by Saucy (as opposed to every symmetry in the group), and
a group can be obtained from many different sets of generators. We can solve this
problem as follows. If a particular parameterised permutation is found in more
than one instance but not in all, we check the group of symmetries of the other
instances to see if the permutation is, in fact, present. This is done via the GAP
system for computational group theory [4]. If the parameterised permutation is
indeed found in all instances, it is marked as a candidate.

Example 10. Consider the social golfers problem with values of d being (2, 2, 2),
(3, 2, 2), (4, 2, 2), (2, 3, 2), (2, 4, 2), (2, 2, 3), (2, 2, 4). Our implementation finds
an instance of the “all value swap” pattern for the third dimension (golfers are
interchangeable) for every value of d. However, the “all value swap” pattern
for the first dimension (the weeks are interchangeable) is found for only 5 out
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Fig. 2. Graph instances for Queens[4] and Queens[5]

of the 7 values of d, due to the particular generators given by Saucy. Searching
explicitly for this pattern in the groups found for the other values of d shows that
it is indeed present in all of them and can thus be considered a likely candidate.

4.4 Step four: Proving class symmetries

This last step can be achieved, for example, by first representing both the pa-
rameterised CSP and the candidate parameterised permutation in the logic for-
malism described in [8], and then making use of theorem proving techniques.
Of course, such a technique is in general undecidable. We are currently explor-
ing an alternative approach that we hope will be more successful: to use graph
techniques to prove that our likely candidate is an automorphism of the param-
eterised graph G[Data]. This is however not straightforward, since G[Data] is
not really a graph, but a syntactic construct that represents a class of graphs.

5 Detailed Examples

We have seen how our current implementation automatically detects as likely
candidates all parameterised symmetries in LatinSquare[N]. This is, however,
not always the case. Here we provide three other examples: Queens, for which it
again detects all parameterised symmetries as likely candidates, Social golfers,
for which it also detects all symmetries (after adding a new pattern), and Golomb
ruler, for which it fails to detect any likely candidate.
Queens: aims at positioning N queens on an N × N chess board without at-
tacking each other. The following parameterised CSP Queens[N ] uses N integer
variables (each being the row in which the queen appears) with domains in [1..N ].

X[N ] = {qi|i ∈ [1..N ]}
D[N ] = [1..N ]
C[N ] = {qi 6= qj |i ∈ [1..N ], j ∈ [i + 1..N ]}∪
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{qi + i 6= qj + j|i ∈ [1..N ], j ∈ [j + 1..N ]}∪
{qi − i 6= qj − j|i ∈ [1..N ], j ∈ [j + 1..N ]}

Its parameterised graph G[N ] = (V [N ], Ec[N ] ∪ Ev[N ]) is:

V [N ] = {qiv|i, v ∈ [1..N ]}
Ec[N ] = {{qiv, qjv}|i, v ∈ [1..N ], j ∈ [i + 1..N ])}∪

{{qivi , qjvj}|i, vi, vj ∈ [1..N ], j ∈ [i + 1..N ], vi + i = vj + j)}∪
{{qivi , qjvj}|i, vi, vj ∈ [1..N ], j ∈ [i + 1..N ], vi − i = vj − j)}

Ev[N ] = {{qivi , qjvj}|i, vi, vj ∈ [1..N ], vi 6= vj}

where node qiv represents literal qi = v. Given the initial base tuple (4), our im-
plementation generates G[4], G[5] and G[6]. Figure 2 shows the graph instances
G[4] and G[5], together with the generators found by Saucy. For G[4] it finds:

A 〈q11, q12, q21, q22, q31, q32, q41, q42〉 ↔ 〈q14, q13, q24, q23, q34, q33, q44, q43〉
B 〈q12, q13, q14, q23, q24, q34〉 ↔ 〈q21, q31, q41, q32, q42, q43〉

which can be parameterised to match:

A dimension invert with k = 2: L[N ]iv ↔ L[N ]i(N−v+1),∀v, i ∈ [1..N ]
B dimension swap with k = 1 and k′ = 2:L[N ]ij ↔ L[N ]ji,∀i, j ∈ [1..N ]

and for G[5] Saucy finds:

A1〈q11, q12, q21, q22, q31, q32, q41, q42, q51, q52〉 ↔
〈q15, q14, q25, q24, q35, q34, q45, q44, q55, q54〉

B 〈q12, q13, q14, q15, q23, q24, q25, q34, q35, q54〉 ↔
〈q21, q31, q41, q41, q32, q42, q52, q43, q53, q45〉

where B is an extension of the generator with the same name found for G[4]
(and matches the same dimension swap pattern), and A1 is a new generator
that matches the same dimension invert pattern as A. The generators found for
G[6] are, again, an extension of B that matches the dimension swap pattern,
and a new generator A2 that matches the same pattern as A and A1. The
intersection of the patterns results in both being marked as likely candidates.

Social Golfers: aims at building a schedule of W weeks, with G equally-sized
groups per week, and P golfers per group, such that each pair of golfers may
play in the same group at most once. A parameterised CSP Golf[W,G,P ] is:

X[W,G,P ] = {playerswg|w ∈ [1..W ], g ∈ [1..G]}
D[W,G,P ] = ℘({1..P ∗G})
C[W,G,P ] = {|playerswg| = P |w ∈ [1..W ], g ∈ [1..G]}∪

{|playerswg1 ∩ playerswg2 | = 0|w ∈ [1..W ],g1, g2 ∈ [1..G], g1 < g2}∪
{|playersw1g1 ∩ playersw2g2 | ≤ 1|w1, w2 ∈ [1..W ],w1 < w2, g1, g2 ∈ [1..G], g1 < g2}

where ℘ is the powerset. The associated parameterised graph G[W,G,P ] is:

V [W,G,P ] = {nwgp|w ∈ [1..W ], g ∈ [1..G], p ∈ ℘([1..P ∗G])}
Ec[W,G,P ] ={nwgp|w ∈ [1..W ], g ∈ [1..G], |p| 6= P}∪

{〈nwg1p1 , nwg2p2〉|w ∈ [1..W ], g1, g2 ∈ G, g1 < g2,
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p1, p2 ∈ ℘([1..P ∗G]), |p1 ∩ p2| 6= 0)}∪
{〈nw1g1p1 , nw2g2p2〉|w1, w2 ∈ [1..W ], w1 < w2, g1, g2 ∈ G,

g1 < g2, p1, p2 ∈ ℘([1..P ∗G]), |p1 ∩ p2| > 1}
Ev[W,G,P ] ={〈nwgp,p, nwgp2〉|w ∈ [1..W ], g ∈ [1..G],p1, p2 ∈ ℘([1..P ∗G]), p1 6= p2}

where node nwgp represents literal playerswg = p. The parameterised versions of
the generators found for G[2, 2, 2] are:

A {nija ↔ nijb|i ∈ [1..W ], j ∈ [1..G], a, b ∈ ℘([1..P ∗G]),1 ∈ a; b = (a \ {1}) ∪ {2}}
B {nija ↔ nijb|i ∈ [1..W ], j ∈ [1..G], a, b ∈ ℘([1..P ∗G]),2 ∈ a; b = (a \ {2}) ∪ {3}}
C {nija ↔ nijb|i ∈ [1..W ], j ∈ [1..G], a, b ∈ ℘([1..P ∗G]),3 ∈ a; b = (a \ {3}) ∪ {4}}
D {n11v ↔ n12v|v ∈ ℘([1..P ∗G])}
E {n21v ↔ n22v|v ∈ ℘([1..P ∗G])}
F {n1jv ↔ n2jv|j ∈ [1..G], v ∈ ℘([1..P ∗G])}

Generators A, B and C represent symmetries that swap golfers 1 with 2, 2
with 3, and 3 with 4, respectively. Taken together, our implementation detects
the combined all value swap permutation pattern that states that all golfers are
interchangeable. Generator F represents the symmetry that swaps week 1 and
week 2. This trivially matches the all value swap pattern that states that all
weeks are interchangeable, and also the dimension invert pattern that reflects
the weeks. Generators D and E represent symmetries that swap groups 1 and
2 within week 1, and within week 2, respectively. Our implementation did not
consider parameterised patterns that perform a swap on only a subset of the
literals and, thus, failed to detect such pattern as likely candidate. However, once
we extended the set of patterns to include one that represents the interchanging
of values within a particular row or column, this symmetry was captured.

The generators for G[2, 3, 2], G[2, 2, 3], G[2, 4, 2] and G[2, 2, 4] include the
extended versions of generators A to F in G[2, 2, 2], plus additional generators
representing the interchangeability of the extra golfers, and of the extra groups.
As before, our implementation detects the combined all value swap pattern that
states that all golfers are interchangeable and that all weeks are interchangeable.
With the inclusion of the pattern mentioned above, the interchangeability of
groups within each week is also marked as likely candidate.

The generators for G[3, 2, 2] include the extended versions of A, B, C, D
and E. However, Saucy produces generators that do not have a simple parame-
terisation. The situation for G[4, 2, 2] is similar. But since the weeks were found
to be interchangeable in all of the other instances, the implementation consults
GAP to check whether this holds for [3, 2, 2] and [4, 2, 2], even though the gen-
erators from Saucy don’t directly correspond to it. GAP indicates that it does
and, therefore, the symmetry is marked as a likely candidate.

Golomb ruler: is defined as a set of N integers (marks on the ruler) a1, . . . , aN
such that the N(N−1)

2 differences aj − ai, 1 ≤ i < j ≤ N are distinct. The
problem involves finding a valid set of N marks. The following parameterised
CSP Golomb[N] uses N integer variables (the marks) with domains in [0..N2],

plus N(N−1)
2 integer variables (the differences) with domains [1..N2].
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X[N ] = {marki|i ∈ [0..N ]} ∪ {diffij |i ∈ [1..N ], j ∈ [i + 1..N ]}
D[N ] = {[0..N2], [1..N2]}
C[N ] = {marki −markj =diffij |i ∈ [1..N ], j ∈ [i + 1..N ]}∪

{diffij 6=diffik|i, j ∈ [1..N ], k ∈ [j + 1..N ]}
dom(mi) = [0..N2] ; dom(dij) = [1..N2]

The parameterised graph associated with Golomb[N ] is:

V [N ] = {miv|i ∈ [1..N ], v ∈ [0..N2]}∪
{djiv|i ∈ [1..N ], j ∈ [(i + 1)..N ], v ∈ [1..N2]}

Ec[N ] ={{miv1 ,mjv2 , dijv3}|i ∈ [1..N ], j ∈ [(i + 1)..N ], v1, v2, v3 ∈ [1..N2], v1 − v2 6= v3}∪
{{dijv, dijv}|i ∈ [1..N ], j ∈ [(i + 1)..N ], v ∈ [1..N2]}

Ev[N ] ={(miv1 ,miv2)|i ∈ [1..N ], v1, v2 ∈ [1..N2], v1 6= v2}∪
{(dijv1 , dijv2)|i ∈ [1..N ], j ∈ [(i + 1)..N ], v1, v2 ∈ [1..N2], v1 6= v2}

where node miv represents literal marki = v and node dijv literal diffsij = v.
The generator found by Saucy for G[3] is:

A 〈d121, d122, d123, d124, d125, d126, d127, d128, d129〉 ↔
〈d231, d232, d233, d234, d235, d236, d237, d238, d239〉 plus
〈m10,m11,m12,m13,m14,m15,m16,m17, . . . ,m24〉 ↔
〈m39,m38,m37,m36,m35,m34,m33,m32, . . . ,m25〉

which swaps the lengths of the spaces between the marks, i.e., turns the ruler
back-to-front. This symmetry involves variables from two separate matrices, dij
and mi, and our simple implementation cannot yet handle this. Even if we only
consider the search variables mi, our implementation would need to obtain for
G[3], G[4] and G[5] the pattern {miv ↔ mjv′ |i, j ∈ [1..N ], i = N − j + 1, v, v′ ∈
[0..N2], v = N2− v′+ 1}. Since our implementation currently does not take this
pattern into account, it cannot recognise the symmetry as likely candidate.

6 Results

Let us evaluate our simple implementation (which includes the patterns de-
scribed in Section 4.2 plus the additional pattern described for Social Golfers)
over a set of problems that include those discussed earlier, plus the following.
Balanced Incomplete Block Design: with parameters (v, b, k, r, λ), where the
task is to arrange v objects into b blocks such that each block has exactly k ob-
jects, each object is in exactly r blocks, and every pair of objects occurs together
in λ blocks. The objects are interchangeable and the blocks are interchangeable.
Graceful Graph: with parameters (m,n), where the edges (a, b) of the graph
Km × Pn are labeled by |a− b|, and there is no two edges with the same label.
The corresponding vertices in each clique are simultaneously interchangeable,
the order of the cliques is reversible, and the values are reversible.
N × N queens: where an N×N chessboard is coloured with N colours, so that
a pair of queens in any two squares of the same colour do not attack each other.
The symmetries are those of the chessboard, plus the colours are interchangeable.
Queens (bool): which uses a Boolean matrix model for the Queens problem of
Section 5. The symmetries are those of the chessboard.
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Table 1. Symmetry detection results

Problem Tuple Amount Symmetries Time Instance

BIBD (2,2,2,2,2) +3 objects X 19.0 20%
blocks X

Social Golfers (2,2,2) +2 rows X 376.4 96%
groups X
players X

Golomb Ruler (3) +3 flip X 6.7 99%

Graceful Graph (2,2) +3 intra-clique X 9.0 44%
path-reverse X

value X
Latin Square (3) +3 dimensions X 13.7 10%

value X
N × N queens (4) +3 chessboard X 8.0 21%

colours X
Queens (int) (8) +3 chessboard X 3.6 36%

Queens (bool) (8) +3 chessboard X 5.4 64%

Steiner Triples (3) +3 triples X 16.8 32%
value X

Steiner Triples: where the task is to find n(n−1)
6 triples of distinct integers

from 1 to n, such that any pair of triples has at most one element in common.
The triples are interchangeable and the values are interchangeable.

Table 1 shows the results, where the columns indicate the problem name,
the base tuple, the amount by which each component is increased, the known
symmetries and whether they are found by our implementation, the total running
time in seconds, and the percentage of that time spent in detection (as opposed
to parametrisation). The experiments were run on an dual Intel Core 2 1.86GHz
computer with 1GB of memory. No effort has been made to optimise detection
time; the times are included simply to show the practicality of the approach.

7 Conclusions

The automatic detection of CSP symmetries is currently either restricted to
problem instances, or limited to the class of symmetries that can be inferred
from the global constraints present in the model. This paper provides a radically
new framework that takes advantage of existing (and future) powerful detection
methods defined for problem instances, by generalising their results to models
without requiring them to use any particular syntax. We provide a very simple
(and incomplete) implementation that requires the problem to have matrix-
like structure and only considers a pre-determined number of model symmetries
(those that correspond to permutations of the objects in the matrix). While
this is a very limited implementation of the general framework, it is nonethe-
less capable of detecting symmetries that could previously only be detected for
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instances. Of course, more complete implementations of the framework will be
able to detect even more kinds of symmetries.

We now plan to integrate in our implementation techniques to validate or
reject likely candidates. While theorem proving techniques are an obvious possi-
bility, we are also investigating graph techniques that rely on the parameterised
graph and which we think will be more efficient and complete.
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